# Causal Analysis Using SAS® Software

Clay Thompson SAS Institute Inc.

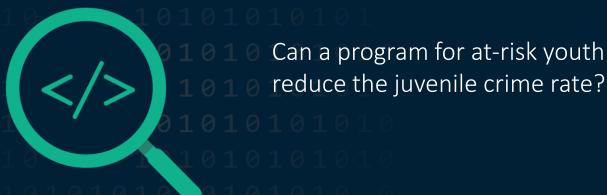
BASUG Webinar 25 January 2023



#### Many research questions are causal in nature

What is the effect of **T** (treatment) on **Y** (outcome)?

How does smoking cessation affect body weight?



Does music training enhance academic performance?



#### A causal effect is a contrast between potential outcomes

Neyman (1923), Rubin (1974)

| 13   | 3   |       |
|------|-----|-------|
| 1550 | Obs | $Y_1$ |
| しりご  | 1   | 37.4  |
| V    | 2   | 36.6  |
|      | 3   | 35.5  |
|      | 4   | 36.7  |
|      | 5   | 32.7  |
|      | 6   | 33.6  |
|      | 7   | 33.5  |
|      | 8   | 31.1  |

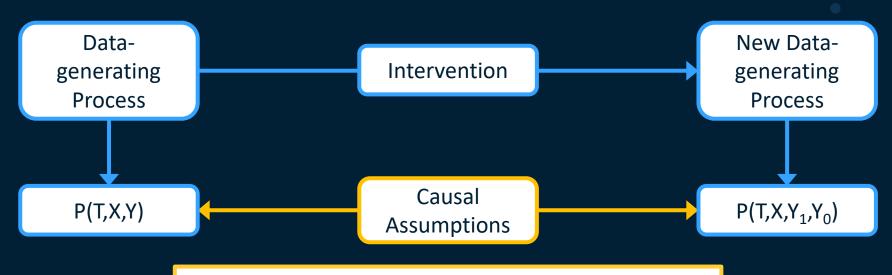
| 13    | 3   |       |
|-------|-----|-------|
| 155.0 | Obs | $Y_0$ |
| くとし   | 1   | 39.5  |
| V     | 2   | 38.0  |
|       | 3   | 37.3  |
|       | 4   | 38.0  |
|       | 5   | 34.3  |
|       | 6   | 35.0  |
|       | 7   | 35.4  |
|       | 8   | 32.4  |

| Obs | T | $Y_1$ | $Y_0$ | Y    |
|-----|---|-------|-------|------|
| 1   | 0 | ?     | 39.5  | 39.5 |
| 2   | 0 | ?     | 38.0  | 38.0 |
| 3   | 0 | ?     | 37.3  | 37.3 |
| 4   | 1 | 36.7  | ?     | 36.7 |
| 5   | 0 | ?     | 34.3  | 34.3 |
| 6   | 1 | 33.6  | ?     | 33.6 |
| 7   | 1 | 33.5  | ?     | 33.5 |
| 8   | 1 | 31.1  | ?     | 31.1 |

ATE = 
$$E[Y_1 - Y_0]$$
  
ATT =  $E[Y_1 - Y_0 | T=1]$ 



# A causal analysis is a statistical analysis plus causal assumptions



- Stable Unit Treatment Value Assumption (SUTVA)
- Causal Consistency
- Positivity
- No Unmeasured Confounders



## There are three major approaches you can use to estimate a total treatment effect

|                  |     | Treatment Model               |                                    |  |  |  |
|------------------|-----|-------------------------------|------------------------------------|--|--|--|
|                  |     | No                            | Yes                                |  |  |  |
| Outcome<br>Model | No  |                               | PS weighting and matching methods  |  |  |  |
| Outo             | Yes | Regression adjustment methods | Doubly robust methods, "causal ML" |  |  |  |



#### **Outline**

- Example: smoking cessation and body weight change
  - Estimating the ATT by matching on the propensity score
  - Estimating the ATT by inverse probability weighting
  - Estimating the ATE by regression adjustment
  - Estimating the ATE with doubly robust methods
- Example: preK enrollment and subsequent academic performance
  - Using a directed acyclic graphic to choose model covariates
  - Exploring causal mechanisms through mediation analysis



### What is the effect of quitting smoking on body weight change? Adapted from Hernán & Robins (2023)

- Data: A subset of NHANES 1 Epidemiologic Follow-Up Study (NHEFS)
- Collect medical and behavioral information in an initial physical examination
- Follow-up interviews completed approximately 10 years later
- Treatment (Quit): indicator of smoking cessation during the 10-year period
- Outcome (Change): change in body weight (kg)
- Assume all missingness is ignorable



# The data include a subject's level of physical activity, smoking habits, and demographic information

Activity: Level of daily activity (0, 1, 2)

Age: Age in 1971 (yrs)

BaseWeight: Weight in 1971 (kg)

Education: Level of education (0,1,2,3,4)

Exercise: Level of regular recreational exercise (0,1,2)

PerDay: Number of cigarettes smoked per day

Race: 0 for white; 1 otherwise

Sex: 0 for male; 1 for female

Weight: Weight at the follow-up interview (kg)

YearsSmoke: Number of years a subject has smoked

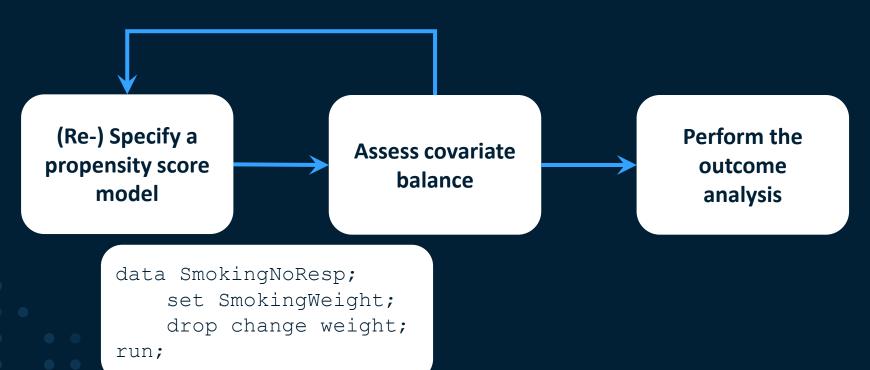


# Estimating the ATT by matching on the propensity score

PROC PSMATCH



# A propensity score—based matching analysis involves three important steps

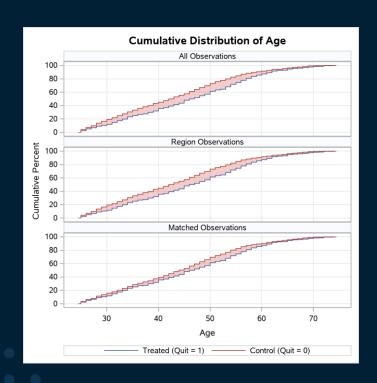


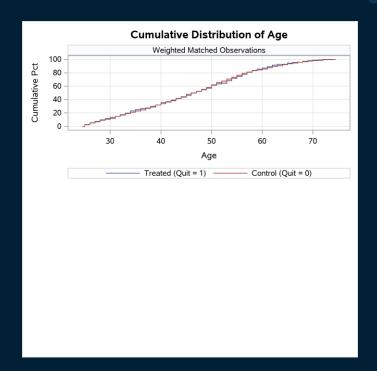
# PROC PSMATCH can fit a PS model, perform matching, assess balance, and create an output data set

```
proc psmatch data=SmokingNoResp;
   class Activity Education Exercise Quit Sex;
   psmodel Quit (Treated='1') = Sex Age Education Exercise Activity
                                YearsSmoke PerDay;
  match distance=lps
         method=varratio(kmin=1 kmax=4)
         caliper=.5;
   assess lps var=(Age YearsSmoke BaseWeight PerDay) /
              plots=(CDFPlot BoxPlot StdDiff);
   output out (obs=all) = SmokeMatched1 weight=matchattwgt
                                       matchid=MatchID;
run;
```



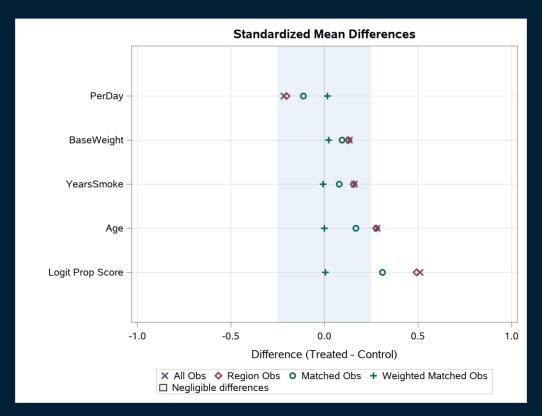
# In the input data set, subjects who quit smoking tended to be older than those who did not quit







# A standardized mean differences plot provides a concise graphical assessment of balance for multiple covariates





# For the outcome analysis, use PROC TTEST with the weights from PSMATCH

| Quit       | Method        | Mean    | 95% CI  | _ Mean  | Std Dev |        | %<br>d Dev |
|------------|---------------|---------|---------|---------|---------|--------|------------|
| 0          |               | 1.2458  | 0.7992  | 1.6925  | 4.5692  | 4.3781 | 4.7779     |
| 1          |               | 4.5251  | 3.6684  | 5.3818  | 8.7483  | 8.1831 | 9.3979     |
| Diff (1-2) | Pooled        | -3.2792 | -4.1171 | -2.4414 | 6.0627  | 5.8469 | 6.2951     |
| Diff (1-2) | Satterthwaite | -3.2792 | -4.2447 | -2.3138 |         |        |            |



# Estimating the ATT by inverse probability weighting

PROC PSMATCH
PROC CAUSALTRT



# PROC PSMATCH uses IPW when no MATCH or STRATA statement is specified

```
proc genmod data=SmokeIPW1;
  class Quit(desc) ID;
  model Change = Quit;
  repeated subject=ID;
  weight attwgt;
run;
```

|           | Analysis Of GEE Parameter Estimates |           |                   |                             |        |      |         |  |  |  |  |  |
|-----------|-------------------------------------|-----------|-------------------|-----------------------------|--------|------|---------|--|--|--|--|--|
|           |                                     | Empirical | Standard E        | rror Esti                   | imates |      |         |  |  |  |  |  |
| Parameter |                                     | Estimate  | Standard<br>Error | 95%<br>Confidence<br>Limits |        | z    | Pr >  Z |  |  |  |  |  |
| Intercept |                                     | 1.2495    | 0.2448            | 0.7697                      | 1.7292 | 5.10 | <.0001  |  |  |  |  |  |
| Quit      | 1                                   | 3.2756    | 0.4993            | 2.2969                      | 4.2543 | 6.56 | <.0001  |  |  |  |  |  |
| Quit      | 0                                   | 0.0000    | 0.0000            | 0.0000                      | 0.0000 |      |         |  |  |  |  |  |



#### PROC CAUSALTRT can directly estimate the ATT by IPW

|           |                    |          | Ar     | nalysis of Ca        | usal Effect | :                             |        |                                                                           |       |                            |   |         |
|-----------|--------------------|----------|--------|----------------------|-------------|-------------------------------|--------|---------------------------------------------------------------------------|-------|----------------------------|---|---------|
| Parameter | Treatment<br>Level | Estimate |        | Bootstrap<br>Std Err |             | Wald 95%<br>Confidence Limits |        | Bootstrap Bias Corrected 95% Wald 95% Confidence Confidence Limits Limits |       | as<br>ected<br>5%<br>dence | z | Pr >  Z |
| POM       | 1                  | 4.5251   | 0.4352 | 0.4282               | 3.6720      | 5.3781                        | 3.7187 | 5.3879                                                                    | 10.40 | <.0001                     |   |         |
| РОМ       | 0                  | 1.2495   | 0.2565 | 0.2595               | 0.7467      | 1.7522                        | 0.7345 | 1.7439                                                                    | 4.87  | <.0001                     |   |         |
| ATT       |                    | 3.2756   | 0.4815 | 0.4855               | 2.3319      | 4.2193                        | 2.3671 | 4.2215                                                                    | 6.80  | <.0001                     |   |         |



# Estimating the ATE by regression adjustment

PROC CAUSALTRT

PROC GLIMMIX

bart Action Set, PROC BART

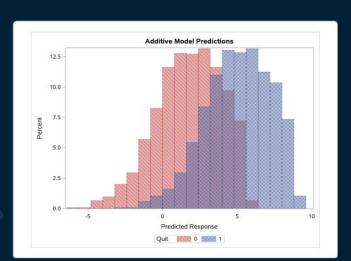


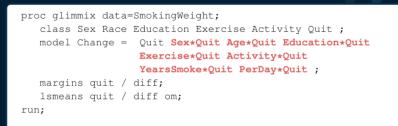
# PROC CAUSALTRT fits a generalized linear model separately within each treatment condition

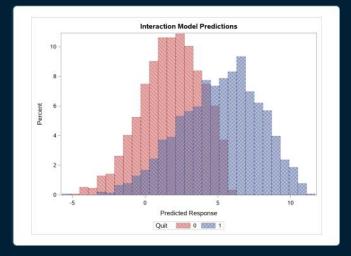
|           |                    | Analys   | is of Caus        | sal Effect       |                  |       |         |
|-----------|--------------------|----------|-------------------|------------------|------------------|-------|---------|
| Parameter | Treatment<br>Level | Estimate | Robust<br>Std Err | Wald<br>Confiden | 95%<br>ce Limits | z     | Pr >  Z |
| РОМ       | 1                  | 5.1407   | 0.4638            | 4.2317           | 6.0496           | 11.08 | <.0001  |
| РОМ       | 0                  | 1.8160   | 0.2163            | 1.3921           | 2.2399           | 8.40  | <.0001  |
| ATE       |                    | 3.3247   | 0.5072            | 2.3306           | 4.3188           | 6.55  | <.0001  |



# A model with all treatment-confounder interactions is comparable to models fit separately

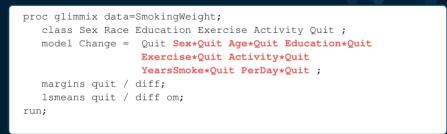








# A model with all treatment-confounder interactions is comparable to models fit separately



| Quit Margins |          |                   |      |         |         |  |  |  |
|--------------|----------|-------------------|------|---------|---------|--|--|--|
| Quit         | Estimate | Standard<br>Error | DF   | t Value | Pr >  t |  |  |  |
| 0            | 1.7994   | 0.2223            | 1552 | 8.09    | <.0001  |  |  |  |
| 1            | 5.0591   | 0.3821            | 1552 | 13.24   | <.0001  |  |  |  |

|      |       | Difference | es of Quit        | Margi | ins        |        |
|------|-------|------------|-------------------|-------|------------|--------|
| Quit | _Quit | Estimate   | Standard<br>Error | DF    | DF t Value |        |
| 0    | 1     | -3.2597    | 0.4461            | 1552  | -7.31      | <.0001 |

|     |      |          | Ç     | uit Mar         | gins   |      |      |     |         |
|-----|------|----------|-------|-----------------|--------|------|------|-----|---------|
|     | Quit | Estimat  |       | andard<br>Error | DF     | t V  | alue | Pr  | >  t    |
| 6   | 0    | 1.816    | 0     | 0.2225          | 1540   |      | 8.16 | <.0 | 0001    |
| ι   | 1    | 5.140    | 7     | 0.4023          | 1540   | 1    | 2.78 | <.0 | 0001    |
|     |      |          |       |                 |        |      |      |     |         |
|     |      | Diff     | erenc | es of C         | Quit M | argi | ns   |     |         |
| Qui | t _Q | uit Esti |       | Standa          |        |      |      | lue | Pr >  t |



# Bayesian additive regression trees (BART) are a popular model type for effect estimation

```
proc bart data=mycas.SmokingWeight
    seed=1972 trainInMem;
class Sex Race Education
        Exercise Activity Quit;
model Change = Quit Sex Age
        Education Exercise
        Activity YearsSmoke
        PerDay;
store mycas.swModel;
run;
```

```
proc cas;
   action bart.bartScoreMargin /
   table = {name="smokingWeight"}
   restore = {name="swModel"}
  margins= {
      { name="Cessation",
        at={{var="Quit" value="1"}}
      { name="No Cessation",
        at={{var="Ouit" value="0"}}
   differences = {
      { label="Cessation Difference"
        refMargin="No Cessation"
        evtMargin="Cessation" } };
   run;
quit;
```

|   | Pre                                                | edicti | ve Ma  | rgins   | ;                 |      |        |  |
|---|----------------------------------------------------|--------|--------|---------|-------------------|------|--------|--|
|   | Description                                        | Estir  | nate   | E       | 95<br>qua<br>Inte | l-Ta | il     |  |
|   | Cessation                                          | 5.2    | 1910   | 4.49    | 393               | 5.9  | 5288   |  |
|   | No Cessation                                       | 1.7    | 7900   | 1.39608 |                   | 2.2  | 1010   |  |
|   | Predictiv                                          | ⁄e Ma  | rgin [ | Differe | ence              | s    |        |  |
| D | 95%<br>Equal-Tail<br>Description Estimate Interval |        |        |         |                   |      |        |  |
| C | essation Differe                                   | nce    | 3.4    | 4401    | 2.54              | 113  | 4.2345 |  |



# Estimating the ATE with doubly-robust methods

PROC CAUSALTRT causalAnalysis.caEffect deepEcon.deepCausal



### A doubly robust method requires that you specify models for both the treatment and the outcome

| Analysis of Causal Effect |                    |          |        |                      |                    |        |        |                           |       |         |
|---------------------------|--------------------|----------|--------|----------------------|--------------------|--------|--------|---------------------------|-------|---------|
| Parameter                 | Treatment<br>Level | Estimate |        | Bootstrap<br>Std Err | Wald<br>Confidence |        | Corre  | as<br>ected<br>%<br>dence | Z     | Pr >  Z |
| РОМ                       | 1                  | 5.0832   | 0.4495 | 0.4637               | 4.2021             | 5.9643 | 4.1806 | 5.9854                    | 11.31 | <.0001  |
| POM                       | 0                  | 1.7783   | 0.2156 | 0.2171               | 1.3557             | 2.2009 | 1.3152 | 2.1702                    | 8.25  | <.0001  |
| ATE                       |                    | 3.3049   | 0.4911 | 0.4943               | 2.3423             | 4.2675 | 2.2922 | 4.2748                    | 6.73  | <.0001  |



## Use TMLE to incorporate machine learning methods into semiparametric efficient estimators

- Machine learning methods excel at predicting outcomes
  - Corresponding confidence intervals are typically absent or insufficient
  - For causal problems, you need to predict Y<sub>t</sub>, not Y
- TMLE is
  - Non-/semiparametric
  - Doubly robust
  - Maximally efficient
  - Substitution estimator



#### TMLE Part I: Create a propensity score model

```
regression.logistic /
    class={"Sex", "Race", "Education",
           "Exercise", "Activity"},
    model={depvar={{name="Ouit", options={event="1"}}},
           effects={"Sex", "Race", "Education", "Exercise",
                    "Activity", "Age",
                    "YearsSmoke", "PerDay"}},
    output={casout={name="swDREstData", replace="True"},
            copyvars="All",
            pred="pTrt"},
    table="SmokingWeight";
run;
```



#### TMLE Part II: Create an outcome model

```
bart.bartGauss /
    inputs={"Sex", "Race", "Education", "Exercise", "Quit",
             "Activity", "Age", "YearsSmoke", "PerDay"},
    nMC="200",
    nTree="100",
    nominals={"Sex", "Race", "Education", "Exercise",
              "Activity", "Quit"},
    seed="2156",
    store={name="bartOutMod", replace="True"},
    table="swDREstData",
    target="Change";
run;
```



#### TMLE Part III: Estimate the causal effect

| POM Differences |                 |            |  |  |  |  |  |
|-----------------|-----------------|------------|--|--|--|--|--|
|                 | atment<br>evels |            |  |  |  |  |  |
| Event           | Reference       | Difference |  |  |  |  |  |
| 1               | 0               | 3.3375     |  |  |  |  |  |

| <b>POM Estimates</b> |          |  |  |  |  |
|----------------------|----------|--|--|--|--|
| Treatment            |          |  |  |  |  |
| Level                | Estimate |  |  |  |  |
| 1                    | 5.12564  |  |  |  |  |
| 0                    | 1.78811  |  |  |  |  |

You can use the deepEcon.deepCausal action to implement doubly/debiased machine learning (DML) methods based on dNNs!



### What is the effect of PreK enrollment on subsequent student performance? A simulated example

- indicator for enrollment in a PreK program • PreK:
- indicator for reading proficiency at the end of 8th grade MidProf:
- indicator for reading proficiency at the end of 4th grade • ElmProf:
- average 4<sup>th</sup> grade class size • ElmSize:
- ESL: indicator for English as a second langange
- ratio off household income to the federal poverty line IncRatio:
- average 8th grade class size MidSize:
- classification variable for primary caregiver's education PCGEd:

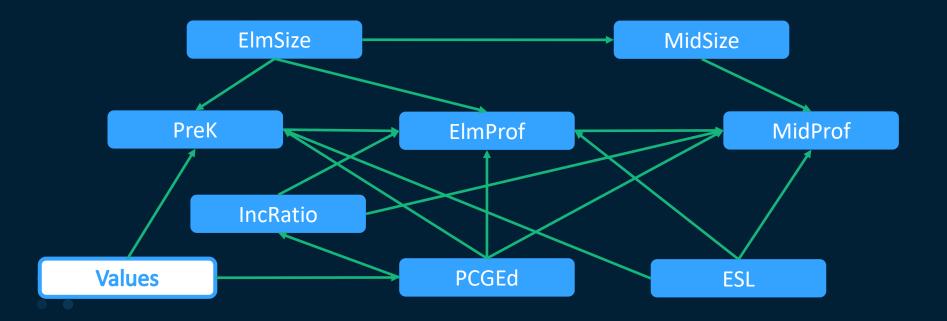


# Using a directed acyclic graph to choose model covariates

PROC CAUSALGRAPH



# A causal diagram is a directed acyclic graph that encodes causal assumptions about the data generating process





# Determine which covariates form a valid statistical adjustment to estimate a causal effect

```
proc causalgraph;
  model "ReadingProf"
        ElmProf => MidProf,
        ElmSize => ElmProf MidSize PreK,
        ESL IncRatio => ElmProf MidProf PreK,
        MidSize => MidProf,
        PCGEd => ElmProf IncRatio MidProf PreK,
        PreK => ElmProf,
        Values => PCGEd PreK;
    latent Values;
    identify PreK => MidProf;
        Covariate Action.
```

|   | Covariate Adjustment Sets for ReadingProf |         |         |            |     |          |         |       |  |  |
|---|-------------------------------------------|---------|---------|------------|-----|----------|---------|-------|--|--|
|   | Causal Effect of PreK on MidProf          |         |         |            |     |          |         |       |  |  |
|   |                                           |         |         | Covariates |     |          |         |       |  |  |
|   | Size                                      | Minimal | ElmProf | ElmSize    | ESL | IncRatio | MidSize | PCGEd |  |  |
| 1 | 4                                         | Yes     |         | *          | *   | *        |         | *     |  |  |
| 2 | 5                                         | No      |         | *          | *   | *        | *       | *     |  |  |

# Use the covariates from PROC CAUSALGRAPH with your preferred method of estimation

```
proc causaltrt data=ReadingObs;
  class ESL MidProf PCGEd PreK / desc;
  psmodel PreK = ElmSize ESL IncRatio PCGEd;
  model MidProf = ElmSize ESL IncRatio PCGEd;
  bootstrap seed=1976;
run;
```

| Analysis of Causal Effect |                    |          |                   |                      |                    |         |                                     |                 |        |         |
|---------------------------|--------------------|----------|-------------------|----------------------|--------------------|---------|-------------------------------------|-----------------|--------|---------|
| Parameter                 | Treatment<br>Level | Estimate | Robust<br>Std Err | Bootstrap<br>Std Err | Wald<br>Confidence |         | Bootstr<br>Correct<br>Confid<br>Lin | ed 95%<br>dence | z      | Pr >  Z |
| РОМ                       | 1                  | 0.7855   | 0.00670           | 0.00646              | 0.7723             | 0.7986  | 0.7718                              | 0.7979          | 117.18 | <.0001  |
| РОМ                       | 0                  | 0.7528   | 0.00562           | 0.00574              | 0.7417             | 0.7638  | 0.7419                              | 0.7644          | 133.90 | <.0001  |
| ATE                       |                    | 0.03270  | 0.00872           | 0.00873              | 0.01561            | 0.04980 | 0.01487                             | 0.04813         | 3.75   | 0.0002  |

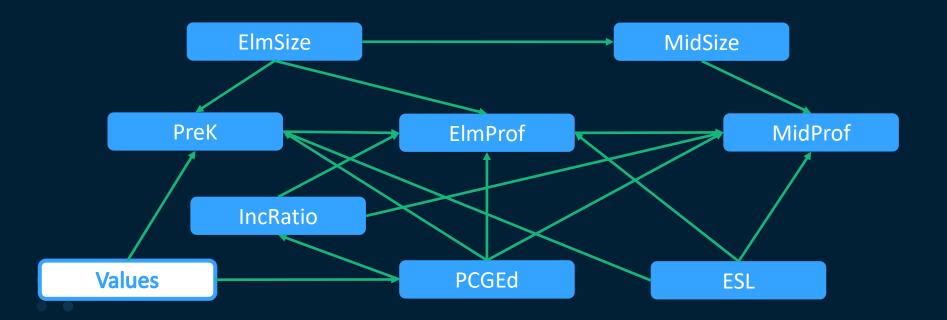


# **Exploring causal mechanisms through mediation analysis**

PROC CAUSALMED



# To what extent is the effect of interest mediated by improved proficiency in elementary school?





# A mediation analysis decomposes the total effect into direct and indirect components

```
proc causalmed data=ReadingObs;
  class ESL PCGEd PreK / desc;
  model MidProf = Prek | ElmProf;
  mediator ElmProf = PreK;
  covar ElmSize ESL IncRatio PCGEd;
run;
```

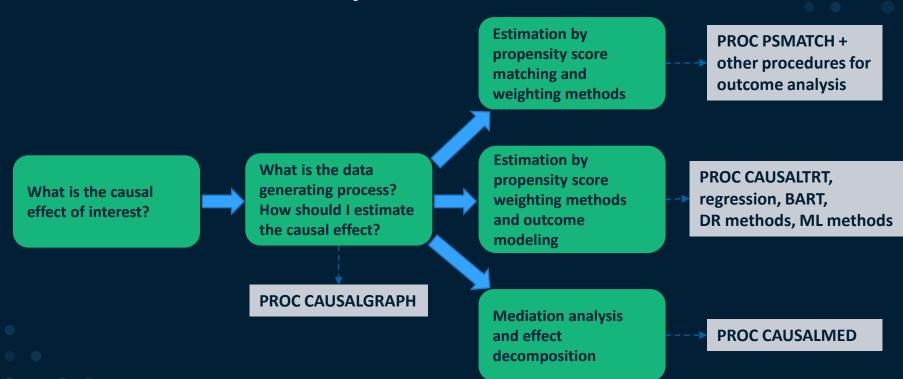
| Summary of Effects             |          |                   |                               |         |       |         |  |  |  |
|--------------------------------|----------|-------------------|-------------------------------|---------|-------|---------|--|--|--|
|                                | Estimate | Standard<br>Error | Wald 95%<br>Confidence Limits |         | z     | Pr >  Z |  |  |  |
| Total Effect                   | 0.03396  | 0.008735          | 0.01684                       | 0.05108 | 3.89  | 0.0001  |  |  |  |
| Controlled Direct Effect (CDE) | 0.02537  | 0.008546          | 0.008624                      | 0.04212 | 2.97  | 0.0030  |  |  |  |
| Natural Direct Effect (NDE)    | 0.02555  | 0.008559          | 0.008778                      | 0.04233 | 2.99  | 0.0028  |  |  |  |
| Natural Indirect Effect (NIE)  | 0.008407 | 0.001927          | 0.004631                      | 0.01218 | 4.36  | <.0001  |  |  |  |
| Percentage Mediated            | 24.7556  | 7.6304            | 9.8003                        | 39.7109 | 3.24  | 0.0012  |  |  |  |
| Percentage Due to Interaction  | -0.7598  | 1.4251            | -3.5530                       | 2.0333  | -0.53 | 0.5939  |  |  |  |
| Percentage Eliminated          | 25.2832  | 7.6608            | 10.2683                       | 40.2981 | 3.30  | 0.0010  |  |  |  |



### **Summary**



# You can build a causal analysis workflow with SAS procedures and actions





### Causal analysis procedures in SAS 9

| Procedure        | Primary Use                                                                                                    | Release (Year)                    |
|------------------|----------------------------------------------------------------------------------------------------------------|-----------------------------------|
| PROC PSMATCH     | Assessment of covariate balance; creation of matched data sets for causal effect estimation                    | SAS 9.4M4 (2016)<br>SAS/STAT 14.2 |
| PROC CAUSALTRT   | Direct estimation of a causal effect                                                                           | SAS 9.4M4 (2016)<br>SAS/STAT 14.2 |
| PROC CAUSALMED   | Decomposition of a (total) causal effect into direct and indirect effects                                      | SAS 9.4M5 (2017)<br>SAS/STAT 14.3 |
| PROC CAUSALGRAPH | Analysis of graphical causal models; construction of sound statistical strategies for causal effect estimation | SAS 9.4M6 (2018)<br>SAS/STAT 15.1 |



### Causal analysis procedures in SAS Viya 4

| Procedure                                               | Primary Use                                                              | Release (MM/YY)                         |
|---------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------|
| bart Action Set, PROC BART (SAS Visual Statistics)      | Bayesian additive regression trees, including predictive margins         | 2022.1.1 (05/22)<br>2022.09 LTS (09/22) |
| causalanalysis Action Set (SAS Visual Statistics)       | Estimation of potential outcome means and causal effects                 | 2022.11 (11/22)                         |
| deepecon Action Set, PROC DEEPCAUSAL (SAS Econometrics) | Doubly/debiased machine learning of causal effects and policies via dNNs | 2021.1.4 (08/21)<br>2021.2 LTS (10/21)  |

The SAS Programming Runtime Environment (SPRE) in Viya 4 provides access to licensed SAS 9 PROCs



### Thank you

sas.com

