
FIVE REASONS TO SWIPE RIGHT ON

PROC FCMP
THE SAS® FUNCTION COMPILER FOR BUILDING USER-DEFINED FUNCTIONS

BOSTON AREA SAS USER’S GROUP (BASUG)

TROY MARTIN HUGHES

JUNE 7, 2023

Copyright © 2023 Troy Martin Hughes

BIOGRAPHY

Troy has been a SAS practitioner for more than

20 years, has managed SAS projects in support

of federal, state, and local government

initiatives, and is a SAS Certified Base,

Advanced, V8, and Clinical Trials Programmer.

Since 2013, he has presented more than 150

talks, trainings, and posters at SGF, SAS

Analytics Experience, WUSS, SCSUG,

MWSUG, SESUG, PharmaSUG, BASAS, and

BASUG. He has an MBA in Information

Systems Management and certifications

including: PMP, PMI-RMP, PMI-PBA, PMI-ACP,

SSCP, CSSLP, CISSP, CRISC, CISA, CGEIT,

CISM, CSM, CSD, A-CSD, CSPO, CSP-SM,

CSP-PO, CSP, SAFe Government Practitioner,

Network+, Security+, CySA+, CASP+, Cloud+,

and ITIL Foundation. Troy is a US Navy veteran

with two Afghanistan deployments.

Copyright © 2023 Troy Martin Hughes

• Five Solutions Using FCMP User-Defined Functions:

1. incorporate and hide (encapsulate) complex operations (like hash objects)

2. manipulate arrays through reusable methods

3. execute complex operations during format/informat application

4. execute DATA steps and PROCs from inside DATA steps (e.g., getters/setters)

5. replace unnecessary reliance on user-defined macros and metaprogramming

• Five High-Level Benefits of User-Defined Functions:

1. software modularity

2. software maintainability

3. software reusability

4. software security

5. software configurability

OUTLINE

Copyright © 2023 Troy Martin Hughes

1. Introduce functions and function nomenclature from a software-agnostic

perspective, and demonstrate how functions increase software modularity,

maintainability, reusability, security, and configurability.

2. Introduce the FCMP procedure, and demonstrate FCMP use cases and basic

FCMP syntax.

3. Ultimately, improve 1) the quality of the software you write and 2) the quality of the

development environment in which you write software.

 Productivity and Popularity

OBJECTIVES

Copyright © 2023 Troy Martin Hughes

NOMENCLATURE

Copyright © 2023 Troy Martin Hughes

Some dimensions of software quality:

• modularity – decomposition of software into discrete components, such that

modification to one component requires minimal or no change to others

• maintainability – the ability for a system or software to be modified (while in

production) to correct defects, alter functionality, or improve performance

• reusability – the ease with which a software component can be reused, either in the

current or future software products or projects

• security – code defined and maintained within functions is independently tested,

stored, and accessed, which mitigates accidental corruption

• configurability – the ability for a system or software to produce variable output or

functionality when provided variable input

SOFTWARE QUALITY NOMENCLATURE

Copyright © 2023 Troy Martin Hughes

Built-in – a software component that ships (or downloads) with a software application,

such as SAS built-in functions, subroutines, or procedures:

• PROC SORT – built-in procedure that orders a data set

• %LENGTH – built-in macro function that evaluates length of text

• CALL SORT – built-in subroutine that orders variables or values

• UPCASE – built-in function that capitalizes a character variable

User-Defined – a software component that is built, tested and documented (hopefully),

and deployed by end users (i.e., that’s us!)

BUILT-IN VS. USER-DEFINED

Copyright © 2023 Troy Martin Hughes

Call

• “1. transfer of control from one software module to another, usually with the

implication that control will be returned to the calling module”

• “3. to transfer control from one software module to another as in (1) and, often, to

pass parameters to the other module”

 - ISO/IEC/IEEE 24765:2017-09, second edition

Callable Module – a module capable of being called (by invoking its name)

Calling Module – the program or module that calls (and temporarily transfers program

control to) a callable module

Called Module – the module that is called by the calling module

CALLS AND CALLABLE MODULES

Copyright © 2023 Troy Martin Hughes

Function

• “1. defined objective or characteristic action of a system or component”

• “2. software module that performs a specific action, is invoked by the appearance of

its name in an expression, receives input values, and returns a single value”

 - ISO/IEC/IEEE 24765:2017-09, second edition

• some SAS built-in functions (e.g., DATE, TIME) do not declare parameters, and

instead rely on SAS or system environment variables for all input

• SAS functions—both built-in and user-defined—will nearly always require input

FUNCTIONS

Copyright © 2023 Troy Martin Hughes

Specification (aka, the specs) – defines the function’s functionality, its input (parameter

declaration), its output (return value, return code), and clarifying context and caveats for

its usage:

• during software development, the “specs” refers to the set of functional and

performance requirements that the software product must meet

• during software operation (O&M), the “specs” refers to the function description,

including external documentation or comments inside the program

Implementation (aka, the function definition) – code that executes when the function is

called

Invocation (aka, the function call) – statement that invokes a function (by calling its

name), and temporarily transfers program control to the function

FUNCTION COMPONENTS

Copyright © 2023 Troy Martin Hughes

specification, implementation, and invocation

FUNCTION COMPONENTS: LOWCASE BUILT-IN FUNCTION

data lower;

 length phrase $100;

 phrase = 'SAS Applications Programming:

 A Gentle Introduction';

 phrase=lowcase(phrase);

 put phrase;

run;

sas applications programming:

 a gentle introduction

invocation specification

implementation

Copyright © 2023 Troy Martin Hughes

LET’S TRAVEL BACK IN TIME

Copyright © 2023 Troy Martin Hughes

Reinventing the wheel accidentally is fruitless; however, intentional reverse engineering

of a built-in function can be beneficial, especially when learning how to build user-

defined functions in a programming language:

• testing a user-defined function is simpler because the output of your user-defined

functions can be compared to the output (i.e., return value or return code) of its

archetypal built-in function—to validate both use cases and misuse cases

• built-in functions typically evince complex, comprehensive exception handling that

imbues robustness, enabling a function to overcome (or at least detect) unwanted

variability; this exception handling can be emulated in user-defined functions

• built-in functions often produce notes or warnings in the log, both of which can be

produced by user-defined SAS functions

• built-in functions are documented extensively; user-defined functions should be as well

REVERSE ENGINEERING A BUILT-IN FUNCTION

Copyright © 2023 Troy Martin Hughes

On page 353, Frank notes:

UPCASE. UPCASE converts all lowercase

characters in its argument to uppercase. Its

syntax follows:

 UPCASE(string)

The string is a character string.

Nonalphabetic characters are unaffected by

this function. There is no analogous function

to convert to lowercase.

- SAS Applications Programming: A Gentle

Introduction

1982 SAS User’s Guide contains only 15

built-in character functions!!!

A TIME BEFORE LOWCASE

Copyright © 2023 Troy Martin Hughes

Non-callable LOWCASE functionality:

A TIME BEFORE LOWCASE

data lower;

 length phrase $100;

 phrase = 'SAS Applications Programming: A

Gentle Introduction';

 do i = 1 to length(phrase);

 if 65 <= rank(char(phrase,i)) <= 90

 then substr(phrase,i,1)

 = byte(rank(char(phrase,i)) + 32);

 end;

 put phrase;

run;

sas applications programming: a gentle

introduction

Software Quality

Characteristics Checklist

• modularity

• maintainability

• readability

• reusability

• security

• portability

• configurability

Copyright © 2023 Troy Martin Hughes

Callable LOWCASE functionality:

A TIME BEFORE LOWCASE

proc fcmp outlib=work.funcs.char;

 function tiny(str $) $100;

 do i = 1 to length(str);

 if 65 <= rank(char(str,i)) <= 90

 then substr(str,i,1)

 = byte(rank(char(str,i)) + 32);

 end;

 return(str);

 endfunc;

quit;

options cmplib=work.funcs;

data lower;

 length phrase $100;

 phrase = tiny('The Little SAS Book');

 put phrase;

run;

TINY function:

• created 6-7-2023, tmh

• lowers case of a

character variable

• argument cannot exceed

100 characters

• no warning for truncation

• tested on Windows

• not portable to mainframe

invocation

specification

implementation

Copyright © 2023 Troy Martin Hughes

Callable LOWCASE functionality:

A TIME BEFORE LOWCASE

proc fcmp outlib=work.funcs.char;

 function tiny(str $) $100;

 do i = 1 to length(str);

 if 65 <= rank(char(str,i)) <= 90

 then substr(str,i,1)

 = byte(rank(char(str,i)) + 32);

 end;

 return(str);

 endfunc;

quit;

options cmplib=work.funcs;

data lower;

 length phrase $100;

 phrase = tiny('The Little SAS Book');

 put phrase;

run;

function

declaration

STR character

parameter

FCMP wrapper

function name

terminate

PROC FCMP

output location

declare char

return value

return value

end function

declaration

reference

output location

Copyright © 2023 Troy Martin Hughes

1. HIDE YOUR HASH

Copyright © 2023 Troy Martin Hughes

Requirements:

• perform a horizontal sort of character values within a single character variable

• simplify (and modularize) code by encapsulating hash operations

Featured in:

• Sorting a Bajillion Variables: When SORTC and SORTN Subroutines Have Stopped

Satisfying, User-Defined PROC FCMP Subroutines Can Leverage the Hash Object to

Reorder Limitless Arrays

HIDE HASH AND OTHER COMPLEX OPERATIONS

https://www.pharmasug.org/proceedings/2023/AP/PharmaSUG-2023-AP-094.pdf
https://www.pharmasug.org/proceedings/2023/AP/PharmaSUG-2023-AP-094.pdf
https://www.pharmasug.org/proceedings/2023/AP/PharmaSUG-2023-AP-094.pdf

Copyright © 2023 Troy Martin Hughes

“HORIZONTAL” SORT – REORDER VALUES (IN A VARIABLE)

We the People of the

United States, in Order

to form a more perfect

Union, establish

Justice, insure domestic

Tranquility, provide for

the common defence,

promote the general

Welfare, and secure the

Blessings of Liberty to

ourselves and our

Posterity, do ordain and

establish this

Constitution for the

United States of

America.

Copyright © 2023 Troy Martin Hughes

“HORIZONTAL” SORT – REORDER VALUES (IN A VARIABLE)

a a a a a a a a a a a a

a a a a a a a a a a a a

a a a a a a a a a a a a

a a a a a a a a a a a a

a a a a ability absence

absent absolutely accept

acceptance according

according according

according accordingly

account act act act acts

acts actual actual

actually

Copyright © 2023 Troy Martin Hughes

HASH OBJECT “HORIZONTAL” SORT (OF CHARACTER VAR)

proc fcmp outlib=work.funcs.sort;

 subroutine reorder_words(string $);

 outargs string;

 length key $20 num cnt 8;

 declare hash h(ordered:

 'ascending');

 declare hiter iter('h');

 rc=h.defineKey('key');

 rc=h.defineData('key','cnt');

 rc=h.defineDone();

 do num=1 to countw(string);

 key=scan(string,num,'','S');

 * increment/add a key;

 if h.find()=0 then cnt+1;

 else cnt=1;

 rc=h.replace();

 end;

 * rebuild ordered char var;

 num=1;

 string='';

 do while(iter.next()=0);

 do tot=1 to cnt;

 string=catx(' ',

 string,key);

 num+1;

 end;

 end;

 endsub;

quit;

Copyright © 2023 Troy Martin Hughes

HASH OBJECT “HORIZONTAL” SORT – INVOCATION

Calling the REORDER_WORDS subroutine:

data _null_;

 length some_words $100;

 some_words='curry petra cheap friends inside of abdullah

 aqib bought for and';

 call reorder_words(some_words);

 put some_words=;

run;

Results printed to log:

some_words=abdullah and aqib bought cheap curry for friends inside

of petra

Copyright © 2023 Troy Martin Hughes

2. MANIPULATE ARRAYS

Copyright © 2023 Troy Martin Hughes

Requirements:

• perform a horizontal sort of character variables

• design a callable module that overcomes an 800-variable limitation of CALL SORTC

(and all other built-in functions that leverage the OF operator inside PROC FCMP)

• simplify (and modularize) code by encapsulating hash and array operations

Featured in:

• Sorting a Bajillion Variables: When SORTC and SORTN Subroutines Have Stopped

Satisfying, User-Defined PROC FCMP Subroutines Can Leverage the Hash Object to

Reorder Limitless Arrays

MANIPULATE ARRAYS AND HIDE COMPLEX OPERATIONS

https://www.pharmasug.org/proceedings/2023/AP/PharmaSUG-2023-AP-094.pdf
https://www.pharmasug.org/proceedings/2023/AP/PharmaSUG-2023-AP-094.pdf
https://www.pharmasug.org/proceedings/2023/AP/PharmaSUG-2023-AP-094.pdf

Copyright © 2023 Troy Martin Hughes

“HORIZONTAL” SORT – REORDER VARIABLES

We

the

People

of

the

United

States,

in

Order

to

form

a

more

perfect

Union,

establish

Justice,

Copyright © 2023 Troy Martin Hughes

“HORIZONTAL” SORT – REORDER VARIABLES

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

Copyright © 2023 Troy Martin Hughes

“HORIZONTAL” SORT – REORDER VARIABLES

proc transpose data=const

 out=const_wide

 prefix=word;

 var word;

run;

data const_wide_sorted;

 set const_wide

 (drop=_name_);

 array words[*] $ word:;

 call sortc(of words[*]);

 put word1-word7;

run;

Typically performed using:

1. SORT function or subroutine

2. SORTC function or subroutine (for character variables)

3. SORTN function or subroutine (for numeric variables)

Copyright © 2023 Troy Martin Hughes

HASH OBJECT “HORIZONTAL” SORT (OF ARRAY)

proc fcmp outlib=work.funcs.sort;

 subroutine reorder(arr[*] $);

 outargs arr;

 length key $20 num cnt 8;

 declare hash h(ordered:

 'ascending');

 declare hiter iter('h');

 rc=h.defineKey('key');

 rc=h.defineData('key','cnt');

 rc=h.defineDone();

 do num=1 to dim(arr);

 key=arr[num];

 * increment/add a key;

 if h.find()=0 then cnt+1;

 else cnt=1;

 rc=h.replace();

 end;

 * build ordered array;

 num=1;

 do while(iter.next()=0);

 do tot=1 to cnt;

 arr[num]=key;

 num+1;

 end;

 end;

 endsub;

quit;

Copyright © 2023 Troy Martin Hughes

HASH OBJECT “HORIZONTAL” SORT – INVOCATION

data const_wide_sorted;

 set const_wide (drop=_name_);

 array words[*] $ word:;

 call reorder(of words);

 put word1-word80;

run;

a

a a a a a a a a a a a a a a ability absence absent absolutely accept

acceptance according according according according accordingly account act

act act acts acts actual actual actually adding adhering adjourn adjourn

adjourn adjournment adjournment adjournment

NOTE: There were 1 observations read from the data set WORK.CONST_WIDE.

NOTE: The data set WORK.CONST_WIDE_SORTED has 1 observations and 4422

variables.

Calling the REORDER subroutine:

Results printed to log:

Copyright © 2023 Troy Martin Hughes

3. USE FUNCTIONS AS FORMATS

Copyright © 2023 Troy Martin Hughes

Requirements:

• perform data validation during data ingestion (i.e., INPUT statement)

• facilitate complex business rules and logic inside informat application

Featured in:

• Make You Holla’ Tikka Masala: Creating User-Defined Informats Using the PROC

FORMAT OTHER Option To Call User-Defined FCMP Functions That Facilitate Data

Ingestion Data Quality

APPLY A FORMAT/INFORMAT THAT CALLS A FUNCTION

https://www.pharmasug.org/proceedings/2023/AP/PharmaSUG-2023-AP-291.pdf
https://www.pharmasug.org/proceedings/2023/AP/PharmaSUG-2023-AP-291.pdf
https://www.pharmasug.org/proceedings/2023/AP/PharmaSUG-2023-AP-291.pdf

Copyright © 2023 Troy Martin Hughes

MASTER DATA (LOOKUP TABLE)

Establish a core set of potential tikka masala ingredients:

data ingredients;

 infile datalines dsd;

 length ingredient $50;

 input ingredient $;

 datalines;

cumin

chili powder

coriander

turmeric

garlic

salt

chicken

;

In master data management (MDM), these

integral, unduplicated data can be termed

“master data” and in aggregate can be referred

to as a “master table” (aka, the golden record or

golden table)

Copyright © 2023 Troy Martin Hughes

TRADITIONAL METHOD: USER-DEFINED INFORMAT

CNTLIN option in PROC FORMAT can be used to create data-driven formats and

informats:
set ingredients(rename=(ingredient=start)) end=eof;

 length label $32 fmtname $32 type $2 hlo $2;

 label=start;

 fmtname='inf_tikka';

 type='j'; * J denotes a character informat;

 hlo='';

 output;

 if eof then do;

 label='';

 start='';

 hlo='o'; * O denotes other (i.e., invalid);

 output;

 end;

run;

proc format cntlin=inf_tikka_data;

run;

Copyright © 2023 Troy Martin Hughes

USER-DEFINED FUNCTION (WITH HASH OBJECT)

By placing the hash table and its functionality inside a user-defined function (defined using

PROC FCMP), hash functionality is encapsulated, and becomes callable and reusable:

The CMPLIB system option must be specified prior to calling a user-defined function:

proc fcmp outlib=work.funcs.recipes;

 function make_you_holla_tikka_masala(ingredient $) $;

 declare hash h(dataset: 'ingredients');

 rc=h.defineKey('ingredient');

 rc=h.defineDone();

 if h.check()=0 then return(ingredient);

 else return('');

 endfunc;

quit;

options cmplib=work.funcs;

data troys_tasty_tikka_valid_hash;

 set troys_tasty_tikka;

 item=make_you_holla_tikka_masala(item);

run;

Copyright © 2023 Troy Martin Hughes

USER-DEFINED INFORMAT THAT CALLS A FUNCTION

With a user-defined function created, PROC FORMAT can call that function, which will

perform function operations whenever the informat is applied to a variable:

When the informat is applied to the ingredients, the identical

data set is created:

proc format;

 invalue $ inf_tikka_hash other=[make_you_holla_tikka_masala()];

run;

data troys_tasty_tikka_valid;

 infile f dsd delimiter=',';

 length item $50 quantity 8 measurement $ 20;

 input item : $inf_tikka_hash. quantity measurement $;

run;

One downside, however, is that when OTHER is utilized to call the function, it can no longer

initialize the _ERROR_ automatic variable; a workaround is demonstrated in the white paper.

Copyright © 2023 Troy Martin Hughes

4. DEEP PROC AND DEEP DATA

Copyright © 2023 Troy Martin Hughes

Requirements:

• calculate average diameter of planets in solar system

• perform calculations dynamically (only if needed during runtime)

• perform calculations inside a step that traditionally would require a preceding PROC

or DATA step

Featured in:

• Undo SAS® Fetters with Getters and Setters: Supplanting Macro Variables with More

Flexible, Robust PROC FCMP User-Defined Functions That Perform In-Memory

Lookup and Initialization Operations

RUN A DATA STEP OR PROC INSIDE A DATA STEP

https://www.pharmasug.org/proceedings/2023/HT/PharmaSUG-2023-HT-093.pdf
https://www.pharmasug.org/proceedings/2023/HT/PharmaSUG-2023-HT-093.pdf
https://www.pharmasug.org/proceedings/2023/HT/PharmaSUG-2023-HT-093.pdf

Copyright © 2023 Troy Martin Hughes

Create the Planets data set (with diameters in kilometers):

CREATE MASTER DATA (LOOKUP TABLE)

data planets;

 infile datalines dsd delimiter=',';

 length name $10 diameter 8;

 input name $ diameter;

 format diameter comma8.0;

 datalines;

mercury,4879

venus,12104

earth,12756

mars,6792

jupitor,142984

saturn,120536

uranus,51118

neptune,49528

pluto,2376

;

Copyright © 2023 Troy Martin Hughes

The COMPUTE_MEAN_MACRO macro executes PROC SQL:

The COMPUTE_MEAN function calls the COMPUTE_MEAN_MACRO macro:

FUNCTION CALLS MACRO THAT CALLS PROC SQL

%macro compute_mean_macro();

%let dsn=%sysfunc(dequote(&dsn));

%let var=%sysfunc(dequote(&var));

proc sql noprint;

 select avg(&var) into: avg

 from &dsn;

quit;

%mend;

proc fcmp outlib=work.funcs.stats;

 function compute_mean(dsn $,var $);

 rc=run_macro('compute_mean_macro', dsn, var, avg);

 return(avg);

 endfunc;

quit;

Copyright © 2023 Troy Martin Hughes

The DATA step calls the COMPUTE_MEAN function:

Log:

CALL FUNCTION THAT INVOKES RUN_MACRO

data _null_;

 set planets;

 length statement $40 diff 8;

 diff=diameter - compute_mean('planets','diameter');

 if diff>0 then statement=strip(name) || ' is ' ||

strip(put(diff,comma8.)) ||

 'km greater than average';

 else statement=strip(name) || ' is ' ||

strip(put(abs(diff),comma8.)) ||

 'km less than average';

 put statement;

run;

mercury is 39,907km less than average

venus is 32,682km less than average

earth is 32,030km less than average

Copyright © 2023 Troy Martin Hughes

The COMPUTE_MEAN_MACRO macro executes the DATA step:

The COMPUTE_MEAN function calls the COMPUTE_MEAN_MACRO macro :

FUNCTION CALLS MACRO THAT CALLS DATA STEP

%macro compute_mean_macro();

%let dsn=%sysfunc(dequote(&dsn));

%let var=%sysfunc(dequote(&var));

data _null_;

 set &dsn end=eof;

 retain tot 0;

 tot=sum(tot,&var);

 if eof then call symputx('avg',tot/_n_,'g');

run;

%mend;

proc fcmp outlib=work.funcs.stats;

 function compute_mean(dsn $,var $);

 rc=run_macro('compute_mean_macro', dsn, var, avg);

 return(avg);

 endfunc;

quit;

Copyright © 2023 Troy Martin Hughes

5. REPLACING METAPROGRAMMING

Copyright © 2023 Troy Martin Hughes

Requirements:

• dynamically build a hash object that performs lookup operations

• maintain data exclusively within a built-in data structure (i.e., SAS data set) to ensure special

characters are not encoded within macro variables

• design a solution flexible enough to accommodate various hash objects

Featured in:

• Picking Scabs and Digging Scarabs: Refactoring User-Defined Decision Table Interpretation

Using the SAS® Hash Object To Maximize Efficiency and Minimize Metaprogramming

(authored with Louise Hadden aka Lil Weezie aka Mainframe Mama aka the Girl with the SAS tattoo!)

REPLACING UNNECESSARY MACRO-BASED METAPROGRAMMING

https://www.pharmasug.org/proceedings/2023/SA/PharmaSUG-2023-SA-092.pdf
https://www.pharmasug.org/proceedings/2023/SA/PharmaSUG-2023-SA-092.pdf

Copyright © 2023 Troy Martin Hughes

METAPROGRAMMING WITH SAS MACRO LANGUAGE

%let loc=C:\sas\;

data rum_to_tools;

 infile "&loc.rum_tool_table.csv" truncover firstobs=1 end=eof;

 length line $10000 decision_point_var outcome_var inp_val out_val $32

 macro_code $10000;

 format line $10000.;

 retain decision_point_var outcome_var macro_code '';

 input line & $;

 if _n_=1 then do;

 decision_point_var=strip(scan(line,1,','));

 outcome_var=strip(scan(line,2,','));

 end;

 else do;

 inp_val=strip(scan(line,1,','));

 out_val=strip(scan(line,2,','));

 if _n_>2 then macro_code=catx('',macro_code,'else');

 macro_code=strip(macro_code) || ' if ' || strip(decision_point_var)

 || '="' || strip(inp_val) || '" then '

 || strip(outcome_var) || '="' || strip(out_val) || '";';

 end;

 if eof then call symputx('macro_code',macro_code,'g');

run;

Copyright © 2023 Troy Martin Hughes

• Archaeologists care about soil content when selecting tools; thus, a unique

combination of soil content and rum level (i.e., two decision points) will prescribe tool

selection (i.e., the decision outcome).

• For example, in “potsherds” with “some” level of One Barrel rum, I’ll select a trowel.

MASTER DATA (DECISION TABLE)

Copyright © 2023 Troy Martin Hughes

The SELECT_TOOL function has numerous hardcoded references to my decision table:

Three SQL procedures (shown in the referenced white paper) are required to instead

generate these values dynamically, which are saved to macro variables.

A HARDCODED FUNCTION SHOWS NEEDED ABSTRACTION

proc fcmp outlib=work.myfuncs.decision;

 function select_tool(soil_content $, rum_level $) $;

 length tool $100;

 declare hash h (dataset: 'rum_soil_tool_table');

 rc=h.defineKey('soil_content','rum_level');

 rc=h.defineData('tool');

 rc=h.defineDone();

 rc=h.find();

 return(tool);

 endfunc;

quit;

Copyright © 2023 Troy Martin Hughes

The updated function is now dynamically generated, providing configurability for users:

The macro is called to compile the user-defined function, after which the function can be

called within a DATA step:

THE DYNAMIC FUNCTION SHOWS ABSTRACTION

proc fcmp outlib=work.myfuncs.decision;

 function &function(¶m_list) $;

 length &outcome_var $100;

 declare hash h (dataset: "&dsn");

 rc=h.defineKey(&key_list);

 rc=h.defineData("&outcome_var");

 rc=h.defineDone();

 rc=h.find();

 return(&outcome_var);

 endfunc;

quit;

%mend;

%make_decision_function(select_tool, rum_soil_tool_table);

Copyright © 2023 Troy Martin Hughes

• PROC FCMP empowers users to build user-defined functions and subroutines

• User-defined functions improve the quality of SAS software (e.g., modularity,

maintainability, readability, reusability, security, portability, configurability)

• Functions also improve the quality of your development environment and experience

• Please explore the following white papers for further context and full code:

• Sorting a Bajillion Variables: When SORTC and SORTN Subroutines Have Stopped Satisfying, User-Defined

PROC FCMP Subroutines Can Leverage the Hash Object to Reorder Limitless Arrays

• Make You Holla’ Tikka Masala: Creating User-Defined Informats Using the PROC FORMAT OTHER Option

To Call User-Defined FCMP Functions That Facilitate Data Ingestion Data Quality

• Undo SAS® Fetters with Getters and Setters: Supplanting Macro Variables with More Flexible, Robust PROC

FCMP User-Defined Functions That Perform In-Memory Lookup and Initialization Operations

• Picking Scabs and Digging Scarabs: Refactoring User-Defined Decision Table Interpretation Using the SAS®

Hash Object To Maximize Efficiency and Minimize Metaprogramming

CONCLUSION

https://www.pharmasug.org/proceedings/2023/AP/PharmaSUG-2023-AP-094.pdf
https://www.pharmasug.org/proceedings/2023/AP/PharmaSUG-2023-AP-094.pdf
https://www.pharmasug.org/proceedings/2023/AP/PharmaSUG-2023-AP-291.pdf
https://www.pharmasug.org/proceedings/2023/AP/PharmaSUG-2023-AP-291.pdf
https://www.pharmasug.org/proceedings/2023/HT/PharmaSUG-2023-HT-093.pdf
https://www.pharmasug.org/proceedings/2023/HT/PharmaSUG-2023-HT-093.pdf
https://www.pharmasug.org/proceedings/2023/SA/PharmaSUG-2023-SA-092.pdf
https://www.pharmasug.org/proceedings/2023/SA/PharmaSUG-2023-SA-092.pdf

Copyright © 2023 Troy Martin Hughes

50

troymartinhughes@gmail.com
https://www.linkedin.com/in/troy-hughes-27a998a8

mailto:troymartinhughes@gmail.com
https://www.linkedin.com/in/troy-hughes-27a998a8

	Slide 1: Five Reasons to Swipe Right on PROC FCMP The SAS® Function Compiler for Building User-Defined Functions
	Slide 2: Biography
	Slide 3: Outline
	Slide 4: Objectives
	Slide 5: Nomenclature
	Slide 6: Software Quality Nomenclature
	Slide 7: Built-in vs. User-Defined
	Slide 8: Calls and Callable Modules
	Slide 9: Functions
	Slide 10: Function Components
	Slide 11: Function Components: LOWCASE Built-in Function
	Slide 12: Let’s Travel Back in Time
	Slide 13: Reverse Engineering a Built-in Function
	Slide 14: A Time before LOWCASE
	Slide 15: A Time before LOWCASE
	Slide 16: A Time before LOWCASE
	Slide 17: A Time before LOWCASE
	Slide 18: 1. Hide Your Hash
	Slide 19: Hide Hash and Other Complex Operations
	Slide 20: “Horizontal” Sort – Reorder Values (in a Variable)
	Slide 21: “Horizontal” Sort – Reorder Values (in a Variable)
	Slide 22: Hash Object “Horizontal” Sort (of Character Var)
	Slide 23: Hash Object “Horizontal” Sort – Invocation
	Slide 24: 2. Manipulate Arrays
	Slide 25: Manipulate Arrays and Hide Complex Operations
	Slide 26: “Horizontal” Sort – Reorder Variables
	Slide 27: “Horizontal” Sort – Reorder Variables
	Slide 28: “Horizontal” Sort – Reorder Variables
	Slide 29: Hash Object “Horizontal” Sort (of Array)
	Slide 30: Hash Object “Horizontal” Sort – Invocation
	Slide 31: 3. Use Functions as Formats
	Slide 32: Apply a Format/Informat That Calls a Function
	Slide 33: Master Data (Lookup Table)
	Slide 34: Traditional Method: User-Defined Informat
	Slide 35: User-Defined Function (with Hash Object)
	Slide 36: User-Defined Informat That Calls a Function
	Slide 37: 4. Deep PROC and Deep DATA
	Slide 38: Run a DATA Step or PROC inside a DATA Step
	Slide 39: Create Master Data (Lookup Table)
	Slide 40: Function Calls Macro That Calls PROC SQL
	Slide 41: Call Function That Invokes RUN_MACRO
	Slide 42: Function Calls Macro That Calls DATA Step
	Slide 43: 5. Replacing Metaprogramming
	Slide 44: Replacing Unnecessary Macro-Based Metaprogramming
	Slide 45: Metaprogramming with SAS Macro Language
	Slide 46: Master Data (Decision Table)
	Slide 47: A Hardcoded Function Shows Needed Abstraction
	Slide 48: The Dynamic Function Shows Abstraction
	Slide 49: Conclusion
	Slide 50

