
 Page 1 of 41

SCSUG 2019

An Animated Guide©: SAS® Hashing(and other fast techniques for big data)
Russell Lavery, Contractor for Numeric Resources

ABSTRACT
Hashing is one of the fastest “table lookup” techniques, not just in SAS®, but in any programming language. Figure 1
illustrates the concept of a “table lookup” and the speed advantage of SAS V9 hashing over a SAS format table lookup (a
95% reduction in run time). If a programmer needs to select, from a large file, all subjects that are in a small file, hashing will
likely save both disk space and time. In addition, Hashing capabilities have been expanded so that has tables are now
programming tools. Hashing should be part of the tool kit of every programmer who deals with large files.

This paper will support some additional topics, not just table lookup, that might add to a programmer’s list of tools that can be
applied to big files. Thanks to Paul Dorfman, Don Henderson and Richard DeVenezia for their work on this subject.

Hash Tables can be thought of as a “Big Data Technique”. Since “Big Data” is such a common term these days, other SAS
based big data (read that as Fast techniques) will be reviewed.

Two things are worth an early notice. First: Hashing has been a part of PROC SQL joins for decades. The SQL optimizer
examines the files being joined and decides if a hash will be the fastest join technique. If it is, PROC SQL codes a hash and
does not tell you. This is not a SQL paper, so please see the appendix for more information. Secondly; the very early SAS
hash users coded their own hashes using a SAS array. Because an array can only hold one piece of information, early hash
use focused on table lookup and not merging-via-hashing. However, SAS hashing now has the ability to bring many variables
“through the hash join”. Hashing has become a competitor for “by-merging” and a more general programming technique

INTRODUCTION
Hashing was designed to allow a programmer to subset a large file, based on information in a small file (as is shown in Figure
1). While that is the designed reason for SAS adding this new feature, hashing can also replace by-merges, format lookups,
IORC merges, PROC Summary and sorting. A major benefit of hashing is that it does not need sorted input files. Sorting is a
disk and CPU intensive process.

Hashing has been the subject of much mathematical and programming research. Hashing gets its speed by: 1) a being a
memory resident technique, 2) having a conceptually efficient methodology and 3) being very efficient programmatically.
Being a memory resident technique avoids slow disk access. The logic of the hashing algorithm gives it advantages over
other lookup techniques.

SAS hashing is implemented via C language Objects that are accessed through the regular SAS data step. I suggest an
interested reader google “Dictionary of Hash and Hash Iterator Object Language Elements” of go to the link below.
https://support.sas.com/documentation/cdl/en/lecompobjref/69740/HTML/default/viewer.htm#p0ae2of2fa94xmn1bajgqxczla8u.htm

“Code your own” hashing was introduced to SAS by Dr. Paul Dorfman. His manually-coded techniques run in any version of
SAS and are very fast. However, coding of his techniques, despite his excellent examples in SUG proceedings, has been
considered difficult. Hashing, as implemented by SAS, is considered easier to use than Dr. Dorfman’s original techniques,
though Dr. Dorfman’s original techniques should be considered when speed is critical.

Since V9.1 was released, Dr. Dorfman, Don Henderson, Richard DeVenezia and a few others, have applied the SAS hashing
tool in new and creative ways. They are still leading the application of hashing in SAS. One can not do better than to study
their articles. A major deliverable of this is a detailed review of several of their published examples od hashing as a teble
lookup and also as a general programming technique.

Table Lookup
Table lookup is defined as the use of a key variable, or id, in one file to lookup values in another file. Often the goal is taking
a subset of the large file based on values of the key variable in a small file. Use of hashing for “table lookup” (Figure 1) is a
valuable programming technique because “Hashing table lookups” generally run much faster, and smaller, than other
methods (like by merges). The hashing method is likely to run both quickly and with very little demand for RAM and disk
space.

Best Practices for having programs run fast
As context for hashing, it might be worthwhile to review some programming practices that make your code run fast. Firstly,
most often you are the expensive resource. If it takes you five extra minutes to think how to code some cool hash trick that
runs 30 seconds faster, you have lost.

2

Everyone will recognize the code below as inefficient.
Data Class_age;
Set sashelp.class;
Age_mo=age*12; Run;

Data Class_age_wt;
Set Class_age;
Wt_kg=weight/2.2; Run;
A best practice is to minimize reading/writing the data from/to disk. While SAS has blazingly fast disk I/O, you should still
avoid disk I/O if you can. Accessing data on disk is said to be 20,000 times slower than accessing information in RAM.

Avoid sorting and the sorted-by merge. SAS sorting is fast (SAS has a patent on sorting) but sorting used lots of disk and
CPU resources. Select functions, and algorithms, that SAS, and the underlying hardware, can do quickly (e.g. substring and
like take a lot of computing cycles … though they can be hard to avoid).

MEMORY CONSIDERATIONS
Hashing is a memory resident technique and runs only
when the whole hash “object” (as it is called) and several
other required methods (think of methods as subroutines
used to manage the object) can be held in RAM. Hash
objects, and methods, like SAS arrays are specific to one
data step. The memory used by a hash object, and its
methods, is automatically released when the data step
finishes running. Memory allocated to the hash object can
also be released manually (the hash object can be deleted)
when the object is no longer needed. Manually deleting
objects from memory is considered good programming
practice.

Hashing is done by using a “thing” not seen before in SAS,
an “object”. The “‘subroutine” that does the hashing is
written in C and is called into existence as a SAS data step
executes. There is a SAS “interface” that allows SAS
programmers to call applets as part of data step execution.
New applets can be developed to take advantage of this
interface.

Some Logical result
02 20 21
04 40 41

Why Learn Hashing?
Fast Table Lookup!!

Large file has 1,000,000 Observations

Total Format Format Format
Number of obs Small File as Hash Time Hashing Time as % of Time Build Lookup

in Small File % of Large File (Sec.) Total Format Time Total (Sec.) Time(Sec.)Time(Sec.)

10,000 1.0% 7 75.27% 9.3 2 7.3
100,000 10.0% 9 27.69% 32.5 20.2 12.3
500,000 50.0% 12 3.90% 307.7 280 27.7

DATA STEP
Small File
Key SV1 SV2 SV3

 02 2 2.5 2.7
 09 6 7.5 3.1
 04 4 4.5 4.7

Large File
Key varL1 varL2
03 30 31
01 10 11
05 50 51
02 20 21
04 40 41
06 60 61

Often a
By Merge

And the hash object
requires less memory

than a format.

FIGURE 1

CHECK YOUR RAM ENVIRONMENT AND LOAD FILES INTO RAM

Hash tables must fit in RAM and so it is a good idea to check how much RAM you have allocated to SAS. By default SAS
only requests 2 gig of RAM (you might not be using all of that RAM that you paid to have added to your laptop). Try the
code below to see how much RAM you have available. If you want to allocate more RAM to SAS, and to hash tables, you can
do that on startup using a command in the config file.

DATA _NULL_; /*PRINTS RAM AVAILABLE TO SAS*/

MEM = INPUT(GETOPTION('XMRLMEM'), 16.);
MEM_IN_K=MEM/1024; MEM_IN_MEG=MEM /(1024*1024); MEM_IN_GIG=MEM /(1024*1024*1024);

PUT @3 "MEM =" @18 MEM COMMA16.1; PUT @3 "MEM_IN_K =" @18 MEM_IN_K COMMA16.1;
PUT @3 "MEM_IN_MEG=" @18 MEM_IN_MEG COMMA16.1; PUT @3 "MEM_IN_GIG=" @18 MEM_IN_GIG COMMA16.1
; RUN;

In line with the principles above, though not a hash
technique, is loading a repeatedly used data set into ram. as
is shown in the code to the right. Large reductions in run time
are possible.

Test1 and test2 will be written to disk as they are created but
the disk activity for the reading of data, and any disk
contention between simultaneous reads and writes, will be
reduced.

I once created monthly reports, off the same source, for 40
nursing stations. I ran a macro 40 times against data stored
on disk and wish I had known about this technique at that
time.

LIBNAME MYDATA 'C:\CENSUS_DATA';
SASFILE MYDATA.CENSUS2000.DATA OPEN;
DATA TEST1;
 SET MYDATA.CENSUS; /*LOAD DATA INTO RAM*/
RUN;
DATA TEST2;
 SET MYDATA.CENSUS; /*USE DATA IN RAM*/
RUN;
PROC SUMMARY DATA=
 MYDATA.CENSUS PRINT; /*USE DATA IN RAM*/
RUN;
….. MORE PROCS
SASFILE MYDATA.CENSUS CLOSE; /*FREE UP RAM*/

3

FORMAT TABLE LOOKUP: OLDER (AND SLOWER) COMEITORS OF THE HASH TABLE

Before hash tables were brought into
SAS, format lookups were a fast, and
common, way to do table lookup.

Table lookup is best described with an
example.

Imagine your boss comes in with a list
of patient IDs and says something like
“these people complained about the
treatment of our rehab unit. Go to the
big, master table and lookup their
information from the master record
table.”

You are looking up, in some big file, the
records that are in some smaller file.
That is an example of table lookup

The trick that Figure 2 illustrates is how
to have SAS, programmatically, create
a format statement for you. For more
details google “An Animated Guide:
Power Merges: The format table lookup”

The advantage of this technique is that
neither of the files have to be sorted.
Figure 2 shows a numeric table lookup.

Figure 2

The techniques shown in Figures 2, 3 and 4 do not require the data be sorted as does a by merge. Avoiding sorting is very
good however a by merge will let us bring many variables from one data set and many variables from another data set into
the final output. The techniques in Figures 2, 3 and 4 do not let us bring as much information, from the small file, into the final
output.

Figure 3 shows a character table lookup
using a SAS format.

One thing to note is that a format can
bring “one piece of information” through
the merge.

In this case we assigned a label to be
“yes” and use that in the “if statement”
in step 5.

However, if the small data set had
contained a column char_zip and
another column (say customers in that
zip) we would be able to load the 2nd
column into the label of the format.

If we did that, and changed the if
statement in step 5 we would be able to
bring one piece of information, from the
small file, through the merge and into
the final data set..

Figure 3

4

KEY INDEXING AS TABLE LOOKUP THE FASTEST TABLE LOOKUP[

Key indexing, the technique you can
see in Figure 4, is the fastest technique
for table lookup.

The business situation is the same as
above; our boss has given us a small
file and asked us to get matching
records from the master file.

In this example we are merging on
subject ID and subject ID must be
numeric.

We are going to use the values of
subject ID as the cell number in the
array and so the array must be larger
than the largest subject ID.

In the next figure you can see the small
file having been loaded into the array.

We can load one column from the small
file into the array, so we can bring “one
variable through the lookup”.

Figure 4

Here you can see the small file has
been loaded into the array. Subject
number 1 is loaded into cell number 1 in
the array. Subject number 3 is loaded
into the 3rd cell of the array.

We are using the subject ID number as
the place to put the data for that
subject. This technique is very, very fast
because SAS has to do very little,
behind the scenes, to make this
technique work.

There is a problem if you have, when
loading into the array, repeats of the
subject ID. In this example 14 is
repeated and the programmer must
decide how to handle the situation.

In this case this programmer decided to
keep the 1st encountered value. In
another situation the programmer might
want to keep the last encountered value
– or the average of the encountered
values.

Figure 5

5

In Figure 6 you can see the logic for
seeing whether a subj value, in the
master file, was in the small file..

As was shown above, the subject ID
number identifies the cell position of
interest. If that cell in the array is empty,
that subject ID was not in the small file.
If the cell has a value in it, that subject
ID was in the small file.

This is faster than hash tables but has
three problems.

Firstly; the array must be allocated
before the data in small can be read.

Secondly; we must be “merging” on
numeric values. The merge variable is
going to be the cell number and
sometimes we want to merge on
characters.

Finally; this is very wasteful of RAM.
You can see that the array needs to be
large enough to hold the biggest subject
ID but most of the cells will be blank.

Figure 6

THE GRAPHICAL REPRESENTATION OF THE SAS SYSTEM
Figure 7 shows a graphical paradigm
for thinking about the relationship of
hashing vs. regular SAS subroutines
and memory objects.

Figure 6 is a graphical representation of
the SAS system and it shows the
components of the SAS supervisor and
some of the many different kinds of
memory resident objects that SAS
programmers must now manage.

The input stack is where SAS code is
held after submission. It is a holding
area for code, a pre-processing area.
After code is submitted, the compiler
takes control of the process and starts
requesting tokens. Tokens move
through this path: input stack-word
scanner/token router (where they are
assembled and routed) -word queue -
compiler. The compiler requests tokens
until it encounters a step boundary (run,
PROC, quit etc).

SYMGET/RESOLVE

CALL SYMPUT

%INCLUDE

CALL EXECUTE

EXECUTE
(SAS EXECUTION)

RAM MEMORY

PROGRAM DATA VECTOR

INPUT STACK

WS

TR

COMPILER
(SAS
COMPILATION)

WORD
QUEUE

Hash Object/Method Storage
Hash:
obj.Declare(),obj.DefineDone(),
obj.DefineKey() , bj.DefineData(),
obj. Find(), obj.Check(), obj.Add(),
obj.Remove() , obj.Replace(),
obj.Output(), obj.Delete()
hiter: obj.First(), obj.Last(),
obj.Next(), obj.Prev()

Work.SearchThis
S_Id V_1 V_2 V_3
Sbj13 3 47 679
Sbj2 2 92 969
Sbj5 8 6 957
Sbj4 0 81 523
Sbj1 1 97 399
……….

Work.Small
S_Id S_V
Sbj14 6718
Sbj2 97008
Sbj4 2593
Sbj1 18496
...

iter
Pointer object

vary

First //last //prev //next CODE
move pointer and load value to PDV

H_O

Arrays are sized at compile
and loaded on execution

Figure 7
The Word Scanner/Token Router (WSTR) takes characters off the top of the input stack and groups the characters into
tokens. Completed tokens are put on the word queue(a six token holding area). As the word queue fills up, tokens flow into,
and are stored in, the compiler. When the compiler encounters a step boundary, it takes total control of the process and
compiles the section of code it has in storage.

At this time, during SAS compilation, the compiler checks code syntax and creates the program data vector (PDV).
Statements like set, and infile, trigger the compiler to create a PDV. Arrays are also created on SAS compilation.
Importantly, hash objects are not created as code gets SAS compiled. On SAS compilation, the code required to create and
manage the hash objects is recalled from storage and inserted into your compiled code. Hash objects are created later, when
the included code executes.

6

When SAS code executes, it finally has a chance to interact with the data. On SAs execution, any hash objects, specified in
the code, are created and come into existence in RAM. The box in the lower right of Figure 6 represents RAM memory and
shows several of the “things” that SAS typically loads into RAM. The PDV is in RAM, as are arrays. Formats, when they are
used, are loaded into RAM. Hash objects (the data storage object) and associated methods (associated subroutines to
manage the hash object(s)) all must load into RAM.

THE HASH OBJECT
A hash object is shown in Figure 6 and consists of a top row and descending roots. It can be thought of as an array that
grows roots for additional data storage. A hash object is assigned an initial size for the top row (the number of boxes in the
top row of the hash object is set by the syntax of the submitted code) by the SAS syntax but the hash object dynamically
“grows” root like appendages as data is fed into it. A hash object can hold an unlimited amount of data. The more data that
is fed into the hash object, the longer/deeper the roots become.

When two keys “hash to the same top-level bucket” the hash object starts growing the root like structures shown below the
top level (see Figure 6). Unlike two, or three, dimensional arrays these tree structures are very efficient users of memory.
Hash objects “take” memory as it is needed.

The program that creates the hash object “re-balances” the object as data is loaded into the hash object. Balancing an object
is maintaining a certain relationship among all the keys in a root and insures that searching down a particular root is fast. We
will discuss this in more detail later.

The hash object, while memory resident like an array, is created in a unique process. The compiler uses the C-like SAS
code, that the programmer types in the middle of the data step, to call pre-compiled subroutines from a “hash object/method
storage library”. This pre-compiled code, when it executes, creates the hash object and methods.

ADDRESSING INFORMATION IN THE HASH OBJECT
Accessing information in a hash object is different from accessing information in more familiar SAS storage areas (Arrays and
the PDV). Previously, all information was manipulated in the PDV. Most operations (add, squaring, upcase etc.) will still be
performed on the PDV. Using SAS hashing requires that programmers learn to move data between the hash object and the
PDV. Providing a graphical presentation of moving data between the PDV and hash table will be a major focus of this paper.

A short review might be helpful. To use arrays, a programmer specifies a cell number that contains the desired information.
To get information stored in the fourth cell of the array named sales, SAS code might say: x=sales(4). This would move a
value from cell four in the array to the space on the PDV that is reserved for the variable x. Y=z; tells SAS to copy
information from one part of the PDV to another (from z to y). In the past, the programmer has told SAS exactly what “array
cell number”, or variable, to access. Previous to the hash object, all data access was on the PDV.

Inside the hash object, “Buckets of information” can not be directly addressed via conventional SAS commands or by “bucket
number”. The structure of the hash object is very complex and quite dynamic. To manage/access information in a hash
object, a programmer must employ things called methods (AKA helper subroutines).

To use a hash object the programmer “passes” a key value” (maybe a character value or subject_id or customer_no) to a
method (a helper sub-routine) and the method does the work of figuring where in the hash object the information is stored (or
should be stored). The method applies a mathematical formula (a hashing formula) to the value of the key and produces a
number. That number is the location of a top level bucket on the hash object. Running the mathematical formula to
calculate the “top bucket number” is called hashing.

Inventing/discovering a good hashing function is a complex process requiring a familiarity with Prime Number Theory. Poor
hashing functions caused poor performance and creating a good hash function was an issue discussed in “code your own”
hashing in the Dorfman articles. In SAS, a “good” hashing function/formula is automatically provided/selected by SAS and
this difficult task is no longer a concern of the programmer. The automation of the hashing function is a major convenience
when compared to “code your own” hashing algorithms. People who programmed hashing algorithms, in V8 SAS, had to
assume responsibility for the quality of the hashing function they used.

The inputs (Keys) to the SAS automatic hashing function can be very “free form”. Like keys in a SAS index, they can be
numeric or character. Very importantly, they can be simple (a one variable key) or compound (a many variable key). The
keys can even be a mixture of character and numeric variables. SAS hashing automatically handles all combinations of key
variables. This is a major feature of SAS hashing.

7

AN OVERVIEW OF METHODS (OR HELPER SUBROUTINES)
Objects and methods are new words to many SAS programmers and deserve some attention. Objects are programming
“things” that can hold data and act on it. The data is acted on by using methods (think of methods as sub-routines). I
suggest an interested reader google “Dictionary of Hash and Hash Iterator Object Language Elements” of go to the link
below. https://support.sas.com/documentation/cdl/en/lecompobjref/69740/HTML/default/viewer.htm#p0ae2of2fa94xmn1bajgqxczla8u.htm

It might be helpful to think of a hash object as being a smart array – an array that grows and re-balances/adjusts itself as you
put data in it. Imagine how much programming effort it would take to keep track of the location of data in an array that grows
and shrinks as data is added and removed. Fortunately, this “growing” array comes to the SAS programming community with
a selection of pre-written “data management” sub-routines called methods.

The new methods/commands have a two-part syntax that is different from typical SAS syntax. The syntax is called “dot
syntax” because of the dot that separates the two parts of the commands. The part of the command that is to the left of the
dot is the name of the object to which the command is addressed. The part of the command to the right of the dot specifies
the action to be taken. The two-part syntax is useful because several hashing objects can be created/used in one data step.
The two part (dot) command lets programmers specify the combination of the desired object and the desired action. The two
part command is a common communication technique where multiple objects/beings can “hear” the command. This syntax is
not too different from the two part syntax your kids use. Examples of this are: “Mom (implied dot), can you make me a snack”
or “Dad (implied dot), can I borrow the car keys”. Examples of methods are:

Methods associated with the object hash:
Declare HASH name() Create an object- start looking for parameters that tell how the object will be structured.
Obj.DefineData() this list of variables, on the PDV, are data.
Obj.DefineKey() this list variables, on the PDV, are keys.
Obj.DefineDone() stop looking for parameters. You have all the information you need to create the object.

Other methods:
Obj.ADD() Add an observation to the hash object.
Obj.CHECK() Go to the hash object see if we have anything in the top bucked that this key hashes to- or in a “lower” bucket.
Obj.CLEAR() Removes all items from the hash object without deleting the hash object instance.
Obj.DELETE() Delete the hash object and free up memory.
Obj.DO_OVER()Traverses a list of duplicate keys in the hash object.
Obj.EQUALS()Determines whether two hash objects are equal.
Obj.FIND() The programmer provides a key and the method gets the data from the hash object that is located in the bucket
that the key points to –or in the tree under that bucket. If there is no match for the key, the return code is not zero.
Obj.FIND_NEXT()Sets the current list item to the next item in the current key's multiple item list and sets the data for the
corresponding data variables.
Obj.FIND_PREV()Sets the current list item to the previous item in the current key's multiple item list and sets the data for the
corresponding data variables.
Obj.FIRST() Go to the first “value of key” in the object If this is the lowest key will depend on the sort order of the hash object.
Obj.HAS_NEXT()Determines whether there is a next item in the current key's multiple data item list.
Obj.HAS_PREV()Determines whether there is a previous item in the current key's multiple data item list.
Obj.ITEM_SIZE Returns the size (in bytes) of an item in a hash object.
Obj.LAST() Go to the last “value of key” in the object. If this is the highest key, depends on the sort order of the hash object.
Obj._NEW_() Creates an instance of a hash or hash iterator object
Obj.NEXT() Go to the next “value of key” in the object. Sort order of the object determines if the key is actually larger.
Obj.NUM_ITEMS() Returns the number of items in the hash object
Obj.OUTPUT() Copy contents of the hash object to a SAS data set--in one step.
Obj.PREV() Go to the previous “value of key” in the object. Sort order of the object determines if the key is actually smaller.
Obj.REF() Consolidates the CHECK and ADD methods into a single method call.
Obj.REMOVE() Go to the hash object and remove the bucket to that holds information for this key.
Obj.REMOVEDUP()Removes the data that is associated with the specified key's current data item from the hash object.
Obj.REPLACE() The programmer provides a key and some data to the replace method. The method replaces the old
contents of the hash object bucket with the new data
Obj.REPLACEDUP() Replaces the data that is associated with the current key's current data item with new data
Obj.RESET_DUP() Resets the pointer to the beginning of a duplicate list of keys when you use the DO_OVER method
Obj.SETCU()Specifies a starting key item for iteration.
Obj.SUM()Retrieves the summary value for a given key from the hash table and stores the value in a DATA step variable.
Obj.SUMDUP() Retrieves a summary value for the current data item of the current key and puts value in a DATA step
variable.

8

As can easily be seen, many methods (see blue above) are centered on the tasks that a programmer encounters when s/he
is moving up and down a hash object.

CREATING A HASH OBJECT: THIS ILLUSTRATES MANUALLY PUTTING VARIABELS ON THE PDV
Figure 8 simply shows the creation of a hash
object. The hash object in Figure 8, without any
other SAS code, does no work and is shown here
for illustrative purposes only.

For space purposes, the code is shown on the
input stack. The code would actually create the
hash object when it executes (when it is in the
upper right hand box), not as it sits in the input
stack waiting for processing.

A hash object should only be declared once in a
data step; at the top of the data step. It is left to
the programmer to write do-group code to insure
that it is only defined once. Figure 3 uses the
code:
If _n_=1 then do;/*Evaluate 1 time*/
 Many Lines of C-like code to
 declare the object;
End;

The first line inside the do group is:
Declare hash
 H_O(dataset:"work.small"
 ,hashexp: 4);

Hash Object/Method Storage
Hash: Declare, DefineDone
DefineKey, DefineData,
Find, Check, Add, Remove ,
Replace, Output, Delete

hiter: obj.First(), obj.Last(),
obj.Next(), obj.Prev()

INPUT STACK
Data look ;

if _n_=1 then do;
declare hash
 rc=H_O(dataset:"work.small"
 ,hashexp: 4
);

rc=H_O.defineKey("S_Id");

rc=H_O.defineData("S_Id”,”S_V");

rc=H_O.defineDone();
 end;
run;

WS

TR

COMPILER
(SAS
COMPILATION)

SYMGET/RESOLVE

CALL SYMPUT

%INCLUDE

CALL EXECUTE

EXECUTE
(SAS EXECUTION)

RAM MEMORY

DATA VECTOR

WORD
QUEUE

Methods:
Find

Check
Delete

Replace
Add

Methods:
Declare DefineDone
DefineKey DefineData
Output Remove

H_O

Work.SearchThis
S_Id V_1 V_2 V_3
Sbj13 3 47 679
Sbj2 2 92 969
Sbj5 8 6 957
Sbj4 0 81 523
Sbj1 1 97 399
……….

Work.Small
S_Id S_V
Sbj14 6718
Sbj2 97008
Sbj4 2593
Sbj1 18496
...

Length S_id $ 8. S_V 8;

S_id =“ “; S_V =.;

RCS_Id S_V

FIGURE 8
NOTE: If the declare statements are allowed to execute for each
pass through the data step, the hash object will be destroyed and
re-created at every pass through the data step. This is not
efficient coding.

This command, when passing through the compiler, causes the compiler to recall code from a library and insert it into the
SAS program. Additional dot commands, inside the do-group, affect what supporting methods are called from the library.
When the SAS program executes, it will execute both the programmer’s compiled SAS code and the included low-level code.
The included low-level creates and manages the hash object.

Let’s examine the code shown in Figure 8. We would like to create the hash object only once and so it is imbedded in a do-
group that executes when the first observation is processed. The declare statement takes several parameters and will, when
executing, create the hash object according to the parameters supplied.
Declare HASH H_O will create a hash object named H_O.

Hashexp: 4 causes the hash object to be created with an initial size of 2^4 , or sixteen, “buckets”. Figure 3 shows a hash
object named H_O that has16 buckets in the top row.

dataset:"work.small” specifies that the hash object be loaded with information from the data set work.small. If there
are more that 2^4 observations in work.small, the hash object will automatically grow “root like appendages” (see Figures 7 &
8) to hold observations.

rc=H_O.defineKey("S_Id"); specifies that values to be used as Keys (input to the hashing function) are to be taken
from the variable S_ID on the PDV. This command is an instruction, to all methods (subroutines) that access the hash object,
to look in the variable S_Id on the PDV –for the current value of the lookup key (the value to be used by methods).

If one wants to find what the hash object holds for key “Sbj2477” , the value “Sbj2477” is put into the variable S_ID on the
PDV (a SAS statement S_ID=“Sbj2477”; is one way to do it) and the find method is called. Methods, like find, that manage
data in the hash object will look in the variable S_Id, on the PDV, for the currrnet value of the Key…and look for an entry in
the hash object with that value … and, if the value is found, return data from the hash object to the PDV. Find, I feel.
Should have been named “Find and Return data”.

rc=H_O.defineData("S_Id", “S_V”); is an instruction to all methods (subroutines) that store data on/ return data
from the hash object that the data goes to/comes from the variables S_Id and S_V on the PDV. Note that S_Id was defined
as both key and data. While not required, defining the key variable as both key and data helps keep matching values of Key
and data on the PDV and is generally good programming practice.

rc=H_O.define.done(); is a command to SAS that says that there are no more parameters/commands intended for the
hash object and its associated methods. This is like the end on a do-Group or the run at the end of a PROC or data step.

9

THE RC VARIABLE
Finally, the rc= is a very common component of dot syntax. Most methods produce a number (a return code and rc stands for
return code) whenever they are called. This return code is 0 if the operation was successful and non-zero if there was a
problem with executing (e.g. the find method was passed a value for key, from the PDV, and failed to find a matching
observation in the hash object). The return code is automatically passed to a “system level temp variable”. These “system
level” variables are normally unavailable to user-written SAS code. It is good programming practice to redirect the value of
the return code to a variable on the PDV, which can be checked using normal SAS code. The RC= part of the syntax
redirects the return code from the system level temp variable to a variable called RC on the PDV. The variable does not need
to be named RC.

Checking the value of RC is shown in code below. Re-direction can be tedious and is often skipped for the commands that
set up the hash object (shown below). However, for methods that load/recall data to/from the hash object, checking the value
of RC is the only way to check that the command executed successfully.

if _n_=1 then
 do;
 declare hash h_o(dataset: "work.small", hashexp: 16);

/*if rc NE 0 then put rc= "declare problem";*/
/* else put "declare OK";*/

 rc= h_o.defineKey("S_Id");
 if rc NE 0 then put "problem with key";
 else put "key OK";

 rc= h_o.defineData("S_Id" , "sat_var");
 if rc NE 0 then put "problem with data";
 else put "data OK";

 rc=h_o.defineDone();
 if rc NE 0 then put "problem with done";
 else put "done OK";
 end;

EXAMPLES OF OTHER METHODS
If a programmer wants to find information stored in the hash object s/he can use the find method (if there are no duplicates of
the key variable - more on this later.). The find method will go to the PDV and get the value of the key variable(s) – here S_id.
The find method will use the value of S_id as input to the hashing function. Find uses the result of the hashing function (a
number) to determine in/under which “bucket” in the hash object any data with this key should be stored. The find method will
then go to top level bucket in the hash object. If that bucket holds the key (and data) that the programmer desires, searching
stops and data values are transferred from the hash object back to the PDV. If the top level bucket does not hold the
information desired, the root is searched until either the desired key or the end of the root is found. If there is no match in the
root, the rc variable is set to a non-zero number. If the desired data is found, the RC is set to 0 and data is transferred from
the hash object to the PDV.

If a programmer wants to replace information in the hash object with new information s/he can use the replace method. The
replace method will go to the PDV and find the value of the key variable(s) – here S_id. The replace method uses the value
of S_id as input to the hashing function. Replace uses the output from the hashing function (a number) to determine in which
top-level bucket in the hash object data should be stored. The replace method will then go to the PDV to get “the new data”
to be stored in the hash object (in this case the variables S_id and S_V). Replace will store both variables in one bucket in
the hash object. The replace method replaces the old values in the hash object with new values from the PDV- values taken
from the variables that were defined as data. Think of variables on the PDV as being key or data (or ignored by) for hash
methods.

AN EXAMPLE OF USING HASHING IN A TABLE LOOKUP
OVERVIEW
Figure 9 is the first in a series of graphics showing details of using hashing to do the equivalent of a by merge-a table lookup.

As background, SearchThis is assumed to be a large master file of student information. We want all the information in
SearchThis for the small group of students who are in the file named small. Small also contains a variable of interest called
S_V (for Satellite Variable) and we wish to have S_V end up in the final data set. While hard to see in the graphic, the file
named small is both short and narrow. All of small will be loaded into the hash object.

This program takes both variables from the file small, and stores them in a hash object called H_O. The variable S_id is
defined as key. S_V is defined as data. When the file SearchThis is processed, values of S_id that come from the file
SearchThis are loaded onto the PDV. For each observation in SearchThis, the find method hashes the value of the key
variable. Find uses the hashed value of S_ID, to look in a top-level bucket in the hash object H_O and see if a match is

10

found. If a match is found the associated value of S_V is taken from the hash object and returned to the PDV and RC is set to
0. The contents of the PDV are output to the file named look.

ISSUES WITH THE PDV
Remember that only certain commands (set, merge, infile etc) cause the compiler to create variables on the PDV. The trigger
to create variables on the PDV is not simply the mention of a data set name in your SAS code. In Figure 9, the file small is
only mentioned in a declare statement and declare is NOT a command to the compiler. Declare is an execution command.
Variables that are in small (and not in SearchThis), that are desired in the PDV, must be “manually put on the PDV’ by the
programmer. How this is done is shown in Example 1 (a better way is later) as we step through the process.

STEP THROUGH AN EXAMPLE OF A TABLE LOOKUP USING A HASH OBJECT – EXAMPLE 1
The example is broken down into
three sections and the sections are
shown inside red boxes in the
following figures. In Figure 9 we see
the first section of the example.

In the red box, SAS commands are
issued that create a place for the
variable S_V on the PDV. Unlike
the statements in the _n_=1 loop ,
the statements in the red box in
Figure 4 are commands to the
compiler.

Hashing documentation often shows
just a length command being used
to create spots on the PDV, but
coding just a length command will
cause SAS to issue a warning when
the program runs.

Code that initializes S_V (the
Satellite variable) to missing will
create a place on the PDV and
prevent the warning. It is suggested
that assigning the desired variable a
missing value is sufficient.

WS

TR

COMPILER
(SAS
COMPILATION)

SYMGET/RESOLVE

CALL SYMPUT

%INCLUDE

CALL EXECUTE

EXECUTE
(SAS EXECUTION)

RAM MEMORY

WORD
QUEUE

Hash Object/Method Storage
Hash: Declare, DefineDone
DefineKey, DefineData,
Find, Check, Add, Remove ,
Replace, Output, Delete

hiter: obj.First(), obj.Last(),
obj.Next(), obj.Prev()

Methods:
Find

Check
Delete

Replace
Add

Methods:
Declare DefineDone
DefineKey DefineData
Output Remove

Work.SearchThis
S_Id V_1 V_2 V_3
Sbj13 3 47 679
Sbj2 2 92 969
Sbj5 8 6 957
Sbj4 0 81 523
Sbj1 1 97 399
……….

Work.Small
S_Id S_V
Sbj14 6718
Sbj2 97008
Sbj4 2593
Sbj1 18496
...

DATA VECTOR S_Id S_V RCV_1 V_2 V_3

INPUT STACKINPUT STACK
Data look ;
Length S_V 8;
 S_V =.;
if _n_=1 then do;
declare hash
 rc=H_O(dataset:"work.small"
 ,hashexp: 4
);
rc= H_O.defineKey("S_Id");
rc= H_O.defineData(”S_V");
rc= H_O.defineDone();
 end;

do until (eof);
 set searchthis end=eof;
 rc=H_O.find();
 if (rc=0) then output;
end;
run;

3 SECTIONS:

1) Initalize variables that are not in Searchthis
2) load Hash Object with the file small
3) read Searchthis and output matches

Eof->

Figure 9
A set statement can be used to “put” these variables on the PDV – see later figure.

The variables S_Id and V_1 to V_4 do not need to be manually created because they are all in a dataset (SearchThis) that is
mentioned in a set command and are put on the PDV as the compiler processes the Set SearchThis statement.

The set statement causes SAS to read the file header and create the PDV. S_Id is in both files (SearchThis and small).
Because of its presence in SearchThis, S_Id does not need to be manually initialized (while S_V must be manually created
on the PDV).

11

Figure 10 shows the result of
executing the second boxed section
of code.

All of work.small has been loaded
into the hash object.

The first level of the hash object was
filled up and, as more observations
were hashed to “buckets already
occupied”, the table grew the root-
like additions.

Note that the variable RC is on the
PDV.

WS

TR

COMPILER
(SAS
COMPILATION)

SYMGET/RESOLVE

CALL SYMPUT

%INCLUDE

CALL EXECUTE

EXECUTE
(SAS EXECUTION)

RAM MEMORY

WORD
QUEUE

Hash Object/Method Storage
Hash: Declare, DefineDone
DefineKey, DefineData,
Find, Check, Add, Remove ,
Replace, Output, Delete

hiter: obj.First(), obj.Last(),
obj.Next(), obj.Prev()

Work.SearchThis
S_Id V_1 V_2 V_3
Sbj13 3 47 679
Sbj2 2 92 969
Sbj5 8 6 957
Sbj4 0 81 523
Sbj1 1 97 399
……….

Work.Small
S_Id S_V
Sbj14 6718
Sbj2 97008
Sbj4 2593
Sbj1 18496
...

DATA VECTOR S_Id S_V RCV_1 V_2 V_3

INPUT STACKINPUT STACK
Data look ;
Length S_V 8;
 S_V =.;
if _n_=1 then do;
declare hash
 rc=H_O(dataset:"work.small"
 ,hashexp: 4
);
rc= H_O.defineKey("S_Id");
rc= H_O.defineData(”S_V");
rc= H_O.defineDone();
 end;

do until (eof);
 set searchthis end=eof;
 rc=H_O.find();
 if (rc=0) then output;
end;
run;

Methods:
Find

Check
Delete

Replace
Add

Methods:
Declare DefineDone
DefineKey DefineData
Output Remove

H_O

3 SECTIONS:

1) Initalize variables that are not in Searchthis
2) load Hash Object with the file small
3) read Searchthis and output matches

Sbj4
23

Sbj43
153

Sbj13
254

Sbj33
253

Sbj83
73

Sbj73
34

Sbj44
2593

Sbj4
23

Sbj44
2593

Sbj14
6718

Sbj24
6758

Sbj27
6758

Sbj77
6777

Sbj98
68

Sbj12
18

Sbj11
67

Sbj66
6718

Sbj22
71

Sbj88
6888

Sbj55
55

Sbj11
6711

Sbj22
2218

Sbj12
6128

Sbj77
77

Eof->

Figure 10

Figure 11 shows the execution of
the third part of the code and the
processing of a “failure to match”.

When the set SearchThis statement
executes, the variables from
SearchThis (S_Id V_1 V_2 V_3) are
loaded into the PDV.

The Find method then executes.

Find goes to the PDV and gets the
value of S_Id. Find hashes the
character value (subj13) into a
number which Find uses as the
address of the top level bucket
where/under which this information
should be stored.

Find checks that top=level buckets
in the hash object and all buckets in
the root under that bucket.

In this case, there is “no match” and
Find returns, to RC, a non-zero
number. Because RC is non-zero,
there is no output.

WS

TR

COMPILER
(SAS
COMPILATION)

SYMGET/RESOLVE

CALL SYMPUT

%INCLUDE

CALL EXECUTE

EXECUTE
(SAS EXECUTION)

RAM MEMORY

WORD
QUEUE

Hash Object/Method Storage
Hash: Declare, DefineDone
DefineKey, DefineData,
Find, Check, Add, Remove ,
Replace, Output, Delete

hiter: obj.First(), obj.Last(),
obj.Next(), obj.Prev()

Work.SearchThis
S_Id V_1 V_2 V_3
Sbj13 3 47 679
Sbj2 2 92 969
Sbj5 8 6 957
Sbj4 0 81 523
Sbj1 1 97 399
……….

Work.Small
S_Id S_V
Sbj14 6718
Sbj2 97008
Sbj4 2593
Sbj1 18496
...

DATA VECTOR S_Id S_V RCV_1 V_2 V_3

INPUT STACKINPUT STACK
Data look ;
Length S_V 8;
 S_V =.;
if _n_=1 then do;
declare hash
 rc=H_O(dataset:"work.small"
 ,hashexp: 4
);
rc= H_O.defineKey("S_Id");
rc= H_O.defineData(”S_V");
rc= H_O.defineDone();
 end;

do until (eof);
 set searchthis end=eof;
 rc=H_O.find();
 if (rc=0) then output;
end;
run;

3 SECTIONS:

1) Initalize variables that are not in Searchthis
2) load Hash Object with the file small
3) read Searchthis and output matches

H_O

Sbj4
23

Sbj43
153

Sbj13
254

Sbj33
253

Sbj83
73

Sbj73
34

Sbj44
2593

Sbj4
23

Sbj44
2593

Sbj14
6718

Sbj24
6758

Sbj27
6758

Sbj77
6777

Sbj98
68

Sbj12
18

Sbj11
67

Sbj66
6718

Sbj6
6718

Sbj88
6888

Sbj55
55

Sbj11
6711

Sbj22
2218

Sbj12
6128

Sbj77
77

Methods:
Find

Check
Delete

Replace
Add

Methods:
Declare DefineDone
DefineKey DefineData
Output Remove

679Sbj13

Hash to
Bucket in the
hash Object

If the find is successful, the method
returns a 0 to the variable RC

AND
values to the data variables

There was no occurrence of sbj13 in
the hash object, the method returns
a non-zero number to the variable

RC.

3 47 345Eof->

Figure 11

The do until loop executes again and another observation is read from SearchThis.

12

Figure 12 continues the example
and shows processing of a “match”.
When the set statement executes,
values for variables in SearchThis
(S_Id V_1 V_2 V_3) are loaded into
the PDV.

Then the Find method executes.
Find goes to the PDV and gets the
value of S_Id. Find hashes the
character value (subj2) and
calculates in/under which top-level
bucket (in the hash object) this
information should be stored.

Find checks that bucket and all
buckets in the root under that
bucket. In this case, there is a
match and Find returns two things to
the PDV.

Find returns the value of S_V that
was stored in the hash object and it
returns a zero to RC. Because RC
is zero, the output executes.

WS

TR

COMPILER
(SAS
COMPILATION)

SYMGET/RESOLVE

CALL SYMPUT

%INCLUDE

CALL EXECUTE

EXECUTE
(SAS EXECUTION)

RAM MEMORY

 z

WORD
QUEUE

Hash Object/Method Storage
Hash: Declare, DefineDone
DefineKey, DefineData,
Find, Check, Add, Remove ,
Replace, Output, Delete

hiter: obj.First(), obj.Last(),
obj.Next(), obj.Prev()

Methods:
Find

Check
Delete

Replace
Add

Methods:
Declare DefineDone
DefineKey DefineData
Output Remove

H_O

Work.SearchThis
S_Id V_1 V_2 V_3
Sbj13 3 47 679
Sbj2 2 92 969
Sbj5 8 6 957
Sbj4 0 81 523
Sbj1 1 97 399
……….

Work.Small
S_Id S_V
Sbj14 6718
Sbj2 97008
Sbj4 2593
Sbj1 18496
...

DATA VECTOR S_Id S_V

INPUT STACK
Data look ;
Length S_V 8;
 S_V =.;
if _n_=1 then do;
declare hash
 rc=H_O(dataset:"work.small"
 ,hashexp: 4
);
rc= H_O.defineKey("S_Id");
rc= H_O.defineData(”S_V");
rc= H_O.defineDone();
 end;

do until (eof);
 set searchthis end=eof;
 rc=H_O.find();
 if (rc=0) then output;
end;
run;

RCV_1 V_2 V_3
097008Eof-> 0 2 92 969Sbj2

Hash to
Bucket in the
hash Object

If the find is successful, the method
returns a 0 to the variable RC

AND
values to the data variables

There was an occurrence sbj2 in the
hash object the method returns a

zero value to the variable RC.

Since RC is zero, the output happens.

Figure 12

WHY IS HASHING SO FAST?
Figure 13 shows some of the reasons why hashing outperforms a format in table lookup. A format looks for an entry by
performing a binary search. Figure 13 shows how SAS would find the value 7 in a format and in a hash object. This hash
object has eight buckets in the top row and stores 32 different observations in the hash. The format also has 32 values.

FORMATS USE BINARY SEARCHES
Formats use a technique called
binary search to find desired
information in a format catalog. A
format finds an entry by reading an
observation at the middle of the
format file (here that value is 16).
SAS asks itself if it has found the
entry it wanted. If it has found the
desired entry, SAS stops searching
and transfers the associated value to
the PDV. Sixteen is not the desired
value.

Since it not the desired value, SAS
determines if the desired value is
above or below the value just found.
It is above. SAS no longer needs to
consider rows 16 to 32. The new
search range is 1 to 15. The binary
search repeatedly divides the file in
half. SAS picks the observation in
the middle of the “current range” (the
value 8) and asks if it is the desired
value. If it is, SAS stops searching. It
is not the desired value.

008 control

013 control

029 control

007 test

Hashing uses two searches
•Lets look for
•subject 7

Format File
001 test
002 control
003 test
004 control
005 control
006 control
007 test
008 control
009 test
010 control
011 test
012 test
013 control
014 test
015 control
016 test
017 control
018 test
018 control
020 test
021 control
022 test
023 control
024 test
025 control
026 test
027 test
028 control
029 test
030 control
031 test
032 control

•The hash
function gets
you to a bucket

•The method
searches down
the tree

Format: 5

•Find puts info
on the PDV

007
•Hashing divides
the file into
buckets

•And a tree
structure below
the buckets

Bucket 1

Bucket 2

Bucket 3

Bucket 4

Bucket 5

Bucket 6

Bucket 7

Bucket 8

001 test

025 control

012 test

026 test

002 control

019 test

005 control

028 test

003 test

030 control

032 test

009 control

021 control

014 test
022 test

004 control

006 control

011 test

027 test

024 test

016 test

017 control

010 control

018 control

020 test

023 control

031 test
015 control

Hashing: 3

FIGURE 13

Since it not the desired value, SAS will decide if the desired value is above or below the value it just found. It is above. SAS
no longer needs to consider the “bottom half “ of the old range and has a search range of 1 to 7. SAS picks the observation
in the middle of the new range (4) and asks if it is the desired value. If it is, SAS stops searching. It is not.

The process of dividing the range in half continues until 7 is found. It takes five tries to find the value 7 using a binary search.

13

HASHING USES A TWO-PART SEARCH METHOD
Hashing is a mathematical operation that takes a number as input and, as output, produces an integer in a specified range.

Hashing is an efficient algorithm because its file has a different internal structure and a search that takes advantage of the
structure. The best way to represent the hash object is a series of buckets with root structures growing from each bucket.

Methods take the key(s) off the PDV and hash the key(s) to find a top-level bucket – think of this as one step. Here, the
hashing function takes the key value of 007 and returns a number; in this case a 6. SAS knows that the desired information is
in bucket 6, or in the root under bucket 6. One-step hashing to the proper top-level bucket is one reason why hashing is
faster than formats.

A method reads the top bucket and asks if this is the key SAS is looking for. If it is the desired key, the method puts the
associated data on the PDV and stops.

In Figure 13, during hash table loading several keys hashed to bucket 6 and forced the creation of roots. Since the top bucket
does not contain the desired key the method works down the roots. Roots are loaded/structured so that SAS only has to ask
is “the desired key larger than the one in the current bucket” to be able to traverse the roots. If the desired key is smaller than
the one in the current bucket, SAS looks along the upper fork in the roots. If the desired key is larger, SAS looks in the lower
fork. Using this logic, SAS can find subject 7 in three steps. If the hash object had more buckets in the top level, the roots
would be smaller, and the find would be faster.

Another reason that hashing is faster than format table lookup is that the hashing objects were designed for table lookup and
formats are not designed for this task. Formats have a lot of overhead (do additional work) not needed for doing table lookup.

The figure to right shows a graphic of
a binary search. You start at the
exact middle of the file and
repeatedly divide the file in half.

This makes, conceptually, searching
a format file similar to searching one
big root system.

Every binary search has to start at
the top of the root system.

Figure 14

14

I think of the hash table as being like
a root system with the top cut off.

If we create a 16 bucket hash table,
the hash function allows us to, in one
calculation, go directly to the proper
bucket at the 5th level of the root
system.

We can very easily create hash
tables with 256 top-level buckets and
the hash function, for that table,
would jump immediately to the 7th
level of the root system.

This can be a huge time savings.

Figure 15

HOW MANY BUCKETS SHOULD I HAVE IN THE TOP LEVEL?
Any file can be stored in any hash object (limited by RAM availability). A hash object can be sized as 2^0 (just one) top level
bucket and still hold a million observations. The root system would be deep and performance will likely be poor.

As can be seen from Figures 16 and 17, search time is not very sensitive to the depth of the roots. Every additional level
doubles the capacity of the system, but only contributes to search time linearly. Search time is linear with number of levels.

Figure 16 shows how quickly capacity grows as roots grow. If a hash
object has eight boxes in the top level and we load eight random
observations in it, the objects will (tend to) fill up the first level. Any
of these first-level observations can be found in one step. If the roots
grow to nine levels deep we can find any observation in nine steps
but the capacity of the table is 511 times greater.

The red level in Figure 16 shows how fast the capacity of the tree
grows. Level 5 of the tree, alone, can hold 126 observations. The
total hash object (with all five levels fully filled) can hold 248 obs. or
31 times as many observations as a one-level eight-box hash object.
However, the max search time for a 5 level object is only (approx.)
five times as long as a one level object.

Figure 17 has 16 boxes in the top row and shows how the number of
buckets in the top row of the hash object affect the number of levels
required to hold different numbers of observations. It also shows
how capacity and search times grow. The number of buckets in the
top level of the hash object is a major cause of the speed advantage
of hashing so bigger hash objects can be searched faster. A
suggestion might be to “create a lot of top level boxes (2^8) but not to
worry too much about this issue.

LOADING THE HASH OBJECT AND GROWING TREES
“Even” loading of the hash object and creation of root systems of
uniform depth is a desirable characteristic of a hash object. It can be
achieved if the keys hash uniformly across the top level of the hash
object. This is a common situation in practice. It will happen if keys
are sequentially assigned, like subject id numbers, or customer
numbers. However, if the keys being loaded into the hash object is
oddly distributed, the hash trees can be of different sizes/depths.

Level Obs in Total Obs. Multiplier
Number level N in Object Vs. Lvl. 1
1 level 8 8
2 level 16 24 3
3 level 32 56 7
4 level 64 120 15
5 level 128 248 31
6 level 256 504 63
7 level 512 1016 127
8 level 1024 2040 255
9 level 2048 4088 511

FIGURE 16

Level Obs in Total Obs. Multiplier
Number level n in Object Vs. Lvl. 1
1 level 16 16
2 level 32 48 3
3 level 64 112 7
4 level 128 240 15
5 level 256 496 31
6 level 512 1008 63
7 level 1024 2032 127
8 level 2048 4080 255
9 level 4096 8176 511

FIGURE 17

 24=8+16

15

ADDITIONAL HASHING EXAMPLES
When studying hashing, there is no better advice than: “read the papers that Dr. Dorfman and Don Henderson wrote”. These
papers contain the state of the art techniques. This paper examines techniques that Dr. Dorfman and Don Henderson
published in SUG proceedings.

EXAMPLE2: FROM AN UNSORTED DATASET, PRINT OBS TO THE LOG IN SORTED ORDER

The code to the right, as a learning
exercise, loads an unsorted data set
into a hash object and then puts the
sorted data to the SAS log.

“If 0 then set scores”
 is used to create a PDV that has
variables from scores.

This statement allows the SAS
compiler to see the file header for
scores and put variables from scores
on the PDV – but does NOT read
data into the PDV.

The RC variable is on the PDV
because the compiler sees the
statements starting with RC=.

Code in the box creates a hash
object, called HoldSort, with 2**2
(=four) buckets in the top row.
Dataset:”scores” causes the data set
scores to be loaded into the hash
object.

RAM MEMORY

 St_no Score
006 81
002 100
003 77
001 99
005 67
004 45

INPUT STACK
data _null_;
if 0 then set scores;
dcl hash HoldSort (dataset: "scores"
 , hashexp: 2
 , ordered: "a");
 dcl hiter ItrHold ("HoldSort");
 HoldSort.DefineKey("St_No");
 HoldSort.DefineData("St_No", "Score");
 HoldSort.DefineDone();

do rc=ItrHold.first() by 0 while (rc=0);
put rc= St_No= Score= ;
rc=ItrHold.next(); end;

Put 8*"_Break_";
do rc=ItrHold.last () by 0 while (rc=0);
put rc= St_No= Score= ;
rc=ItrHold.prev(); end;
run;

HoldSort

001
99

002
100

006
81

001
99

004
45

005
67

DATA VECTOR st_no Score RC

003
77

??? ??? ???

??? ??? ???

???
Pointer
Table

ItrHold

Figure 18

Ordered: “a” causes the creation of another “table” that is used by the iter method to move the pointer, in key order,
up/down the hash object. There are indications that this is done using a separate (secret) hash table of pointers. The
question marks were put in the graphic to indicate how little I know about this memory resident object.

Decl hiter ItrHold (“HoldSort”);

causes the loading of a method that uses the pointer table to traverse the HoldSort hash object in key order. A Hiter object
works on ONE Hash object. A datastep can have more than one hash object and more than one Hiter. Accordingly, this
syntax names the Hiter (ItrHold) and specifies the hash object on which the Hiter operates (it operates only on HoldSort).

16

Figure 19 shows (what might be) the
loaded hash object. I have not
found a way to query the true
structure of the hash object. Figure
19 shows a loading that could occur.

The boxes in Figure 19 use the Hiter
method and the “secret” pointer
table to access the hash object.

The line of code

Do rc=ItrHold.first()
 by 0 while (rc=0);

accesses the bucket associated with
the first key in the hash object and
moves data from the hash object
to the PDV. If there is a successful
lookup, a value of 0 is moved to the
variable RC.

The put statement writes to the log.
Note that this example uses a SAS
put, which “writes” information on
the one observation that is in the
PDV.

INPUT STACK
data _null_;
if 0 then set scores;
dcl hash HoldSort (dataset: "scores"
 , hashexp: 2
 , ordered: "a");
 dcl hiter ItrHold ("HoldSort");
 HoldSort.DefineKey("St_No");
 HoldSort.DefineData("St_No", "Score");
 HoldSort.DefineDone();

do rc=ItrHold.first() by 0 while (rc=0);
put rc= St_No= Score= ;
rc=ItrHold.next(); end;

Put 8*"_Break_";
do rc=ItrHold.last () by 0 while (rc=0);
put rc= St_No= Score= ;
rc=ItrHold.prev(); end;
run;

RAM MEMORY

001
99

004
45

005
67

DATA VECTOR st_no Score RC

 St_no Score
006 81
002 100
003 77
001 99
005 67
004 45

001 99002 100003 77004 45005 67006 81 000000

001
99

199

??? ??? ???

??? ??? ???

???
Pointer
Table

002
100

006
81

003
77

HoldSort ItrHold

Figure 19

The code

 Rc=ItrHold.next();

uses the pointer table to try to move the data associated with the next higher key from the hash object to the PDV. If there is
a successful access of the hash object, a value of zero is loaded to the variable RC. The do loop continues as long as RC=0,
as long as there is a successful lookup. This will traverse the whole hash object. In our code we will traverse the hash object
in an upwards direction (key variables low to high) and then in a downwards direction.

Figure 20 shows the log for the
above run. The double headed
arrows show the boundaries of the
loops.

The logic for the first loop is:
1) Once, return data for the first key
to the PDV. Many times: Test for a
successful return.
2) put, from the PDV, to the log
3) use hiter to move data for the
next higher key from the hash
object to the PDV
4) loop to 1)

The logic for the second loop is:
1) Once, return data for the last key
to the PDV. Many times: Test for a
successful return.
2) put, from the PDV, to the log
3) use hiter to move data for the
next lower key from the hash object
to the PDV
4) loop to 1)

13 data _null_;
14 if 0 then set scores;
15 dcl hash HoldSort (dataset: "scores" , hashexp: 2, ordered: "a");
16 dcl hiter ItrHold ("HoldSort");
17 HoldSort.DefineKey("StdntNo");
18 HoldSort.DefineData("StdntNo", "Score");
19 HoldSort.DefineDone();
21 do rc=ItrHold.first () by 0 while (rc=0);
22 put rc= StdntNo= Score= ;
23 rc=ItrHold.next();
24 end;
25 Put 8*"_Break_";
26 ! table;
27 do rc=ItrHold.last () by 0 while (rc=0);
28 put rc= StdntNo= Score= ;
29 rc=ItrHold.prev();
30 end;

31 run;NOTE: There were 6 observations read from the data set WORK.SCORES.
rc=0 StdntNo=001 Score=99
rc=0 StdntNo=002 Score=100
rc=0 StdntNo=003 Score=77
rc=0 StdntNo=004 Score=45
rc=0 StdntNo=005 Score=67
rc=0 StdntNo=006 Score=81
_Break__Break__Break__Break__Break__Break__Break__Break_
rc=0 StdntNo=006 Score=81
rc=0 StdntNo=005 Score=67
rc=0 StdntNo=004 Score=45
rc=0 StdntNo=003 Score=77
rc=0 StdntNo=002 Score=100
rc=0 StdntNo=001 Score=99
NOTE: DATA STEP stopped due to looping.
NOTE: DATA statement used (Total process time):
 real time 1.28 seconds
 cpu time 0.03 seconds

go to position of 1st key-recall key data

load hash table

go to next key

go to position of last key-recall key data

go to next key

Figure 20

ItrHold.next returns keys in ascending order

ItrHold.prev returns keys in descendingrder

17

EXAMPLE 3: ILLUSTRATING THE FUNCTION OF THE OUTPUT METHOD
This example contains poorly
constructed code in order to
illustrate the function of the output
method. It outputs the whole hash
table for each pass through the loop.

The program is similar to previous
examples and the top part of the
code will not be explained.

There are some differences between
this example and previous. The put
statement was removed from the
upper loop and

rc=holdSort.output
(dataset: "Asc_Sort");
was added to the upper loop

rc=holdSort.output
(dataset: "Desc_Sort") ;
was added to the lower loop.

Note that the hash object was
created with the ordered descending
option.

RAM MEMORY

DATA VECTOR st_no Score

 St_no Score
006 81
002 100
001 99
005 67
004 45
003 77

RC

data _null_;
if 0 then set scores;
dcl hash HoldSort (dataset: "scores" ,
 hashexp: 2, ordered: "d");
 dcl hiter Iter4Hold ("HoldSort");
 HoldSort.DefineKey("StdntNo");
 HoldSort.DefineData("StdntNo", "Score");
HoldSort.DefineDone();
*return the data in ascending order;
do rc=Iter4Hold.first () by 0 while (rc=0);
 rc=holdSort.output (dataset: "Asc_Sort");
 rc=Iter4Hold.next();
end;
Put 8*"_Break line_";
*return the data in descending order from a
table sorted in ascending order;
do rc=Iter4Hold.last () by 0 while (rc=0);
 put rc= StdntNo= Score= ;
 rc=holdSort.output (dataset: "Desc_Sort") ;
 rc=Iter4Hold.prev();
end; run;

??? ??? ???

??? ??? ???

???
Pointer
Table

use an output method --> Desc_sort

use an output method --> Asc_sort

Itr4Hold

001
99

004
45

005
67

001
99

002
100

006
81

003
77

HoldSort

Figure 21

Figure 22 shows the log for the
above code. Unlike a SAS output,
which writes the ONE observation in
the pdv, an output method sends
the whole hash object (multiple
observations) to a data set.

In the section of the log above the
“__break line____break line__ “
we see that the top loop sends the
hash object (6 obs) to a file during
every pass through the loop.

do rc=Iter4Hold.first()by 0
 while (rc=0);
 rc=holdSort.output
 (dataset: "Asc_Sort");
 rc=Iter4Hold.next();
end;
This illustrates how an output
method differs from a SAS put or
SAS output.

Note that this is a first-to-last loop on
a hash object that was created with
the ordered descending option.

NOTE: There were 6 observations read from the data set WORK.SCORES.
NOTE: The data set WORK.ASC_SORT has 6 observations and 2 variables.
NOTE: The data set WORK.ASC_SORT has 6 observations and 2 variables.
NOTE: The data set WORK.ASC_SORT has 6 observations and 2 variables.
NOTE: The data set WORK.ASC_SORT has 6 observations and 2 variables.
NOTE: The data set WORK.ASC_SORT has 6 observations and 2 variables.
NOTE: The data set WORK.ASC_SORT has 6 observations and 2 variables.

_Break line__Break line__Break line__Break line__Break line__Break line__Break

rc=0 StdntNo=001 Score=99
NOTE: The data set WORK.DESC_SORT has 6 observations and 2 variables.
rc=0 StdntNo=002 Score=100
NOTE: The data set WORK.DESC_SORT has 6 observations and 2 variables.
rc=0 StdntNo=003 Score=77
NOTE: The data set WORK.DESC_SORT has 6 observations and 2 variables.
rc=0 StdntNo=004 Score=45
NOTE: The data set WORK.DESC_SORT has 6 observations and 2 variables.
rc=0 StdntNo=005 Score=67
NOTE: The data set WORK.DESC_SORT has 6 observations and 2 variables.
rc=0 StdntNo=006 Score=81
NOTE: The data set WORK.DESC_SORT has 6 observations and 2 variables.
NOTE: DATA STEP stopped due to looping.
NOTE: DATA statement used (Total process time):
 real time 1.01 seconds
 cpu time 0.11 seconds

Output the
Whole

dataset at
every loop.

Too much IO here.
This program was not a good idea.

The LOG

Put from the PDV at every loop.

Output the
whole dataset
at every loop.

Figure 22

In the section of the log below the “__break line____break line__” we see the results of a Base SAS put as well as a hash
output. The code is shown below and the critical idea to grasp is in the yellow colored comments.

do rc=Iter4Hold.last () by 0 while (rc=0);/*go to last element of the sorted hash*/
 put rc= StdntNo= Score= ; /*a SAS Put “writes” the PDV, not the whole hash object*/
 rc=holdSort.output (dataset:"Desc_Sort"); /*Note that this one command “writes” 6 obs */
 rc=Iter4Hold.prev(); /*try to return the previous element*/
end;

18

Figure 23 is a PROC Print on the
data set, asc_sort, that was created
in the upper loop in the previous
example.

The data prints in descending key
order, even though the output
method was imbedded in a first-to-
last loop.

From this we can see that the output
method moves the data from the
hash table to the output file, using
the order option specified when the
hash object was created.

The fact that the output method was
imbedded in a first-to-last loop did
not affect the order of the
observations in the output data set.

The order is determined by the sort
order of the hash object, not the
loop in which the output is
imbedded.

33 proc print data=asc_sort;
34 title "Ascending by the key variable StdntNo";
35 run;

Descending by the key variable St_No ordered: "d"
 St_
 Obs No Score

 1 006 81
 2 005 67
 3 004 45
 4 003 77
 5 002 100
 6 001 99

This is the result of outputting a
Descending Sorted Data Set.

The fact that the “outputting” was imbedded inside a
First to Last loop had no effect.

do rc=Iter4Hold.first () by 0 while (rc=0);
 rc=holdSort.output (dataset: "Asc_Sort");
 rc=Iter4Hold.next();
end;

dcl hash HoldSort (dataset: "scores" ,
 hashexp: 2, ordered: "d");

Figure 23

EXAMPLE 4: USING A HASH OBJECT TO SORT A DATA SET
Example 4 is similar to Examples 2
and 3, with the difference being that
it focuses on the SAS output
statement, not an output method.

This illustrates that the four
statements:

Do rc=Iter4Hold.first()
 by 0 while (rc=0);

Rc=Iter4Hold.next();

do rc=Iter4Hold.last() by 0
 while (rc=0);

rc=Iter4Hold.prev();

all move data from the hash object to
the PDV.

RAM MEMORY

INPUT STACK

data Asc_Sort Desc_Sort ;
if 0 then set scores;

dcl hash HoldSort (dataset: "scores" ,
 hashexp: 2, ordered: "a");
dcl hiter Iter4Hold ("HoldSort");

HoldSort.DefineKey("St_No");
HoldSort.DefineData("St_No", "Score");
HoldSort.DefineDone();

*return the data in ascending order;
do rc=Iter4Hold.first () by 0 while (rc=0);
 put rc= St_No= Score= ;
 output Asc_Sort;
 rc=Iter4Hold.next();
end;

Put 8*"_Break line_";
*return the data descending - table
ascending ;
do rc=Iter4Hold.last () by 0 while (rc=0);
 put rc= St_No= Score= ;
 output Desc_Sort ;
 rc=Iter4Hold.prev();
end;

run;

HoldSort

003
77

002
100

006
81

001
99

001
99

004
45

005
67

Stdnt_no Score
006 81
002 100
001 99
005 67
004 45
003 77

SAS output statement

SAS output statement

Itr4Hold

DATA VECTOR st_no Score RC

??? ??????

??? ??? ???

???
Pointer
Table

Figure 24

A SAS output statement moves the data from the PDV to the output file. Unlike the output method, which moves the whole
data set to the output file, the output statement moves the observation that is in the PDV to the output file.The choice of
using syntax that combines a “first” with a “next” syntax or syntax that using a “last” with a “previous” depends on how the data
set was created and what the programmer desires as an output.

19

In a hash table that is created in descending order, the statement
do rc=Iter4Hold.first () by 0 while (rc=0); will first return data for the highest valued key and

and

do rc=Iter4Hold.last () by 0 while (rc=0); will first return data for the lowest valued key.
The “last” observation in a “descending sorted” hash object will contain the smallest key.

EXAMPLE 5: SUM SALES FOR A ZIP CODE IN A HASH OBJECT – AVOID PROC SUMMARY
This exciting example shows how to
use a hash object to replace a PROC
Summary. PROC Summary is
memory resident, like the hash object,
but is so feature laden that it can,
under certain conditions, be slower
than a hash object. PROC Summary
is very fast, but was designed to do
many things. Hash objects can be
faster, because they were designed to
do fewer things.

In Figure 25 we see that the PDV and
the hash table have been created.

The issue of creating proper variables
on the PDV was handled by a
combination of statements. The code
below puts variables on the PDV.

length SmSales 8 ;
if 0 then set zip_sales;

The PDV contains variables called
EOF_loading and RC because the
compiler was able to “see” these
variables as the data step was
compiled. EOF_Loading has a
different look, to emphasize its
(slightly) different function as a loop
controller.

RAM MEMORY

PDV ZiP Phys_no Sales SmSales

INPUT STACK

data _NULL_;
length SmSales 8 ;

if 0 then set zip_sales;

Declare Hash SmTbl(hashexp: 2);
SmTbl.definekey('zip');
SmTbl.definedata("zip","sales","SmSales");

SmTbl.definedone();

do until (EOF_Loading =1);
 set zip_sales end=EOF_loading;
 if SmTbl.find() NE 0 then SmSales=0;

 SmSales++ sales;
 SmTbl.replace();
end;

 rc=sum_tbl.output(dataset: "SumFile") ;
run;

ZIP phys_no sales
 00544 002-1 3
 00544 002-2 5
 00544 002-3 5
 00601 003-1 2
 00601 003-2 1
 00601 003-3 2
 00602 004-1 9
 00605 007-1 7
 00606 008-1 6
 00606 008-2 1

SmTbl

001
99

EOF_Loading =0

RC

Figure 25
NOTE that the code (if 0 then set zip_sales;) used in the figure above
Allows the SAS compiler to “see” the file header for Zip_sales and put
variables from Zip_sales onto the PDV.

20

Figure 26 shows details of processing
the first observation in the data set.
The set statement pulls data into the
PDV. The code

if SmTbl.find() NE 0 then
 SmSales=0;

tries to recall data for 00544 from the
hash object and fails.

Failure causes RC to contain a non-
zero value and this triggers the
assignment

SmSales=0;

The statement below:
if SmTbl.find() NE 0 then
 SmSales=0;

is an elegant bit of code. This one
statement does a lot for us. This is a
good learning example

RAM MEMORY

PDV ZiP Phys_no Sales SmSales RC

INPUT STACK

data _NULL_;
length SmSales 8 ;

if 0 then set zip_sales;

Declare Hash SmTbl(hashexp: 2);
SmTbl.definekey('zip');
SmTbl.definedata("zip","sales","SmSales");

SmTbl.definedone();

do until (EOF_Loading =1);
 set zip_sales end=EOF_loading;
 if SmTbl.find() NE 0 then SmSales=0;

 SmSales++ sales;
 SmTbl.replace();
end;

 rc=sum_tbl.output(dataset: "SumFile") ;
run;

ZIP phys_no sales
 00544 002-1 3
 00544 002-2 5
 00544 002-3 5
 00601 003-1 2
 00601 003-2 1
 00601 003-3 2
 00602 004-1 9
 00605 007-1 7
 00606 008-1 6
 00606 008-2 1

00544 002-1 3 0 124

SmTbl

001
99

EOF_Loading =0

Figure 26
SAS does allow modification inside the elements of a hash object and this example can be made faster. Above, we recall the
data from the hash object - to the PDV – modify it in the PDV and send it back to the hash object. The code in the Box above
does that and helps illustrate how the hash process operates.

Figure 27 shows the summing (0 +3)
happening in the PDV.

The summing happens through the
action of

SMSales ++ Sales;

The code

SmTbl.replace();

sends the value from the PDV back to
the proper place in the hash object.

Since there was no key 00544 in the
hash table, the replace method
functions as an add method and
added this observation to the hash
table.

RAM MEMORY

PDV ZiP Phys_no Sales SmSales RC

INPUT STACK

data _NULL_;
length SmSales 8 ;

if 0 then set zip_sales;

Declare Hash SmTbl(hashexp: 2);
SmTbl.definekey('zip');
SmTbl.definedata("zip","sales","SmSales");

SmTbl.definedone();

do until (EOF_Loading =1);
 set zip_sales end=EOF_loading;
 if SmTbl.find() NE 0 then SmSales=0;

 SmSales++ sales;
 SmTbl.replace();
end;

 rc=sum_tbl.output(dataset: "SumFile") ;
run;

ZIP phys_no sales
 00544 002-1 3
 00544 002-2 5
 00544 002-3 5
 00601 003-1 2
 00601 003-2 1
 00601 003-3 2
 00602 004-1 9
 00605 007-1 7
 00606 008-1 6
 00606 008-2 1

00544 002-1 3 3 124

SmTbl

001
99

00544
3

EOF_Loading =0

Figure 27

21

Figure 28 shows the final step in the
process. It shows the processing of
the last observation from zip code
00606.

After the last observation has been
processed, the flag EOF_Loading is
set to 1 and control escapes the loop.

The whole file is sent to a data set via
the output method.

The hash object contains the sum of
sales for a zip code and use of a
PROC Summary has been avoided.

Again, SAS has created PROC
Summary to have many useful
features and these features can slow
PROC Summary down.

RAM MEMORY

PDV ZiP Phys_no Sales SmSales RC

INPUT STACK

data _NULL_;
length SmSales 8 ;

if 0 then set zip_sales;

Declare Hash SmTbl(hashexp: 2);
SmTbl.definekey('zip');
SmTbl.definedata("zip","sales","SmSales");

SmTbl.definedone();

do until (EOF_Loading =1);
 set zip_sales end=EOF_loading;
 if SmTbl.find() NE 0 then SmSales=0;

 SmSales++ sales;
 SmTbl.replace();
end;

 rc=sum_tbl.output(dataset: "SumFile") ;
run;

ZIP phys_no sales
 00544 002-1 3
 00544 002-2 5
 00544 002-3 5
 00601 003-1 2
 00601 003-2 1
 00601 003-3 2
 00602 004-1 9
 00605 007-1 7
 00606 008-1 6
 00606 008-2 1

Output the whole
hash table to a file

called SumFIle

00544 002-1 3 0 1243

SmTbl

001
99

00544
3

00544 002-2 5 0 8

00544
8

00544 002-3 5 0 13

00544
13

000601 003-1 2 143 2

00601
2

00601 003-2 1 0 300601 003-3 2 0 5

00601
3

00601
5

00602
9

00605
7

00606
6

00606
7

EOF_Loading =0EOF_Loading =1

00606 008-2 1 0 7 127

Figure 28

As SAS executes PROC Summary code, it must “stop and think” if a certain helpful option was selected by the programmer.
Even if the option was not selected, the periodic checking can slow SAS down a bit. The Hash objects were designed to just
do this process and have “low programming overhead”.

22

EXAMPLE 6: CREATE AND USE A HASH TABLE – AVOID A PROC SUMMARY
This example is an extension of the
previous example. This shows the
creation, and use, of a hash object in
one data step.

Here we calculate the each physician’s
percent of sales in his/her zip code.
The data values in the hash object, the
sum of sales for the zip codes, will be
used as denominators in the
percentage calculation.

Assume the hash object was created
as was shown in Example 5.

EOF_Loading and EOF_Using are in
the PDV. They have a different look,
to emphasize their (slightly) different
function as loop controllers.

Figure 29 shows the state of the
system after the creation of the hash
object. The code in the yellow box is
about to execute.

RAM MEMORY

PDV Phys_no

INPUT STACK
data No_Summary;
length SmSales 8;
if 0 then set zip_sales;

Declare Hash SmTbl(hashexp: 2);
SmTbl.definekey('zip');
SmTbl.definedata("zip", "SmSales");
SmTbl.definedone();

do until (EOF_Loading =1); /*read the
sales file into the the hash table */
 set zip_sales end=EOF_loading;
 if SmTbl.find() NE 0 then SmSales=0;
 SmSales++ sales;
 SmTbl.replace();
end;

do until (EOF_Using =1);
 set zip_sales end=EOF_Using;
 rc=SmTbl.find() ;
 if SmSales not IN(0,.) then
 Phys_pcnt= sales/SmSales;
 else Phys_pcnt= .A;
 output No_summary;
end;
run;

ZIP phys_no sales
 00544 002-1 3
 00544 002-2 5
 00544 002-3 5
 00601 003-1 2
 00601 003-2 1
 00601 003-3 2
 00602 004-1 9
 00605 007-1 7
 00606 008-1 6
 00606 008-2 1

ZIP Sales SmSales RC

SmTbl

001
99

00544
13

00601
5

00602
9

00605
7

00606
6

00606
7

00606 008-2 1 7 127

EOF_Loading =1

EOF_Using =0

hash table & PDV- unchanged

Phys_Pct

Figure 29

Figure 30 shows the execution of the
first pass through the loop in the yellow
box.

The set statement reads the data. The
find recalls the sum of sales
(SmSales) for that zip back into the
PDV.

An IF statement is used to avoid
division by zero if the recall “fails”.

A SAS output statement, inside the
loop, is used to send the contents of
the PDV to the output file.

RAM MEMORY

PDV Phys_no

00606

INPUT STACK
data No_Summary;
length SmSales 8;
if 0 then set zip_sales;

Declare Hash SmTbl(hashexp: 2);
SmTbl.definekey('zip');
SmTbl.definedata("zip", "SmSales");
SmTbl.definedone();

do until (EOF_Loading =1); /*read the
sales file into the the hash table */
 set zip_sales end=EOF_loading;
 if SmTbl.find() NE 0 then SmSales=0;
 SmSales++ sales;
 SmTbl.replace();
end;

do until (EOF_Using =1);
 set zip_sales end=EOF_Using;
 rc=SmTbl.find() ;
 if SmSales not IN(0,.) then
 Phys_pcnt= sales/SmSales;
 else Phys_pcnt= .A;
 output No_summary;
end;
run;

ZIP phys_no sales
 00544 002-1 3
 00544 002-2 5
 00544 002-3 5
 00601 003-1 2
 00601 003-2 1
 00601 003-3 2
 00602 004-1 9
 00605 007-1 7
 00606 008-1 6
 00606 008-2 1

ZIP Sales SmSales RC

008-2 1 7

SmTbl

001
99

00544
13

00601
5

00602
9

00605
7

00606
6

00606
7

Phys_Pct

12700544 002-1 3 13 0

EOF_Loading =1

EOF_Using =0.23

SAS
Output

the
PDV

Figure 30

23

EXAMPLE 7: SPLIT A SORTED FILE BY A VARIABLE VALUE - USING A HASH TABLE
Example 7 shows how a sorted file can
be split using a hash table. The author
thinks that the normal way of splitting a
file:

Please note that the code

Data Males Females;
Set SASHELP.class;
If sex=”M”
 then output Males;
Else if sex=”F”
 then output Females;
Else put “odd sex at ” __n__;
Run;

is a more practical way of achieving
the goal of splitting files.

In this example, the data step must be
sorted before this hashing based
technique and the “normal” way to split
a file does not require sorting.

Data _null_;

dcl hash Bysex(hashexp: 2);
BySex.definekey (”Sex", "_N_");
BySex.definedata("Sex","Name);
BySex.Definedone();

*Illustration - remove in use;
sex="U";
Bysex.output(dataset:"Sex_"||sex);

do _n_=1 by 1 until (last.sex);
 set class;
 by sex;
 Bysex.add();
end;

Bysex.output(dataset:"Sex_"||sex);
run;

RAM MEMORY

Name Sex Age Height Weight

Alice F 13 56.5 84.0
Barb F 13 65.3 98.0
Carol F 14 62.8 102.5
Al M 14 69.0 112.5
Henry M 14 63.5 102.5

BySex

001
99

Pointer

PDV Name Sex Age Height

Weight _Error_Last.Sex _N_

01 1

Figure 31
The example contains extra code to (commented as illustration) that provides extra
information on the process.

It is possible to have a datastep process an unsorted file and, using multiple hash objects created inside one data step, and
send girls to one hash object and boys to another. Having tow hash objects would eliminate the need to sort the source data
and be faster. However, the example above is of theoretical interest, because it illustrates how a programmer can make the
PDV and the hash object interact.

The code in the yellow boxes creates the PDV and the hash table. The Sex=”U” and the following statement allow us to see
that the Hash table is being cleared and re-used.

Each observation is read into the PDV, processed and loaded into the hash table. The composite key (sex and _N_ are both
used by the hashing function) insures that all Females are not sent to one “top level bucket” and Males to another one other
“top level bucket”, as would be the case if Sex alone were the key. Composite keys add great flexibility to the hash table.

As review, as each observation is read from a SAS file, SAS advances a “Read this Row” pointer that it uses to keep track of
how far down the data set it has read.

The “Read this Row” pointer is how SAS keeps track of how far it has read as it processes a file. Figure 24 shows this pointer
pointing to Alice

24

Figure 32 shows the state of the
system after the last female has been
read. When last.sex has a value of 1,
it causes control to exit the loop and
dump the current contents of the hash
object to a file. The until test happens
at the bottom of the loop and allows
processing of the observation where
last.sex=1.

The hash object contains only females
and the PDV has a value of F for sex.
The name of the output file is created
by concatenating the string “Sex_” with
the value of sex from the PDV and the
file ends up with a correct name.

In one pass from Data _null_ to run,
we have processed all the females.

After escaping the loop, SAS
processes the output method and
loops to the top of the data step.

Importantly, the pointer in the data set
does not advance. It remains where it
is, positioned to read the first male.

Data _null_;

dcl hash Bysex(hashexp: 2);
BySex.definekey (”Sex", "_N_");
BySex.definedata("Sex","Name);
BySex.Definedone();

*Illustration - remove in use;
sex="U";
Bysex.output(dataset:"Sex_"||sex);

do _n_=1 by 1 until (last.sex);
 set class;
 by sex;
 Bysex.add();
end;

Bysex.output(dataset:"Sex_"||sex);
run;

RAM MEMORY

Name Sex Age Height Weight

Alice F 13 56.5 84.0
Barb F 13 65.3 98.0
Carol F 14 62.8 102.5
Al M 14 69.0 112.5
Henry M 14 63.5 102.5

BySex

Pointer

001
99

F3
Carol

PDV

Barb

Name Sex Age Height

F 13 56.5Carol F 14 62.8

F1
Alice

84.0 00 2

Weight _Error_Last.Sex _N_

102.5 01 3Last.sex=1 Leave
the Loop

to Sex_F

F2
Barb

Figure 32

Between figures 32 and 33, program
control has moved down to the run
statement and back to the top of the
data step.

Note that the dcl hash code is not
inside a
if _n_=1 then do;
 -CODE-
 end;

and executed for every loop through
the data step.

As the declaring (dcl) statement
executes it causes the hash object to
be cleared. This can be verified by the
fact that the data set sex_U has zero
observations.

This clearing of the Hash object is
critical to this process and allows the
table to be re-loaded - with only males.

Data _null_;

dcl hash Bysex(hashexp: 2);
BySex.definekey (”Sex", "_N_");
BySex.definedata("Sex","Name);
BySex.Definedone();

*Illustration - remove in use;
sex="U";
Bysex.output(dataset:"Sex_"||sex);

do _n_=1 by 1 until (last.sex);
 set class;
 by sex;
 Bysex.add();
end;

Bysex.output(dataset:"Sex_"||sex);
run;

RAM MEMORY

Name Sex Age Height Weight

Alice F 13 56.5 84.0
Barb F 13 65.3 98.0
Carol F 14 62.8 102.5
Al M 14 69.0 112.5
Henry M 14 63.5 102.5

BySex

Pointer

001
99

PDV

Carol

Name Sex Age Height

U 14 62.8Al M 14 69.0

M1
Al

102.5 01 2

Weight _Error_Last.Sex _N_

112.5 00 1

Figure 33

Figure 33 shows the state of the system after it has processed the data for Al. New values are being loaded into the hash
object and when last.sex has a value of 1, the hash object will be dumped to a file called Sex_M.

This is an example of a nested loop with an unusual control mechanism. The outer loop is being controlled by the normal
base SAS Data –run loop. This outer loop controls reading different values of sex.

The inner loop is the do _n_=1 code. The inner loop, controlled by the do-end loop, is used to read observations with the
same value of sex .

25

EXAMPLE 8: HASH TABLE WITH DUPLICATE KEYS

When SAS introduced the hash table
it did not have the ability to store
duplicate keys. The hash table had
been designed only for fast table
lookup – but programmers quickly
saw that hash tables could be a
programming tool with much more
power.

The figure to write, on the top half
(Output FAILURE), shows a failure to
load multiple keys into the same hash
object. We wanted to load seven
values into the hash object and are
only able to load four.

The bottom half of this figure (Output
success) shows how, by coding multi-
data:”Y”, SAS is able to load duplicate
keys into the hash table.

The next problem will be to retrieve
data from the hash table when key
values are duplicated in the file we
wish to load into the hash table.

Figure 34

The figure to right, like the figure
above, shows a compare and contrast
situation.
The top half of the figure (Traverse
FAILURE) shows how the .find
method fails to recover all of the
values when there are duplicate keys
in the hash table.

The bottom half of the slide (Traverse
SUCCESS) shows the code required
to retrieve values from a hash table
that has repeating key variables.

The next figures will show my attempt
to provide a graphical illustration of
the SAS system in this situation.

Figure 35

26

The figure to write shows more detail
about this example. Please pay
particular attention to the
representation of the hash table.

Under subj IDs 3 and 14, SAS stores
multiple rows in the hash table.

Note that subj has been defined as
key.
Note that sunj, Nvar and flag have all
been defined as data.

Our task will be to move values from
the program data vector to the hash
table and then back to the program
data vector.

Defining variables as key and data
tells the methods, that do the moving
of data between the PDV and the
Hash table, what parts of the PDV will
be involved.

Figure 36

To make this example easier to
cartoon, just below the gold box on
the left-hand side, I hardcode
subject equals 14.

Let’s step through how that is
processed.

14 is put into SUBJ on the PDV.

The next statement starts a loop and
the find takes the 1st observation from
SUBJ=14 and moves that value to
the data variables on the PDV.

There is a pointer on the hash object
that keeps track of which piece of the
hash object has just been read.

Figure 37

27

In the figure to right we see that the
put statement executes.

This is done to facilitate learning of
the internals of this process.

Figure 38

In the figure to right we see the
find_next method execute.

It looks for the next value for subject
14.

The method places its “return code”
of zero, in _IORC_.

A successful find_next returns a 0
(note that the while statement is
testing for a 0)

The PDV now contains information
from the 2nd entry for subject 14.

Figure 39

28

The figure to right shows the
next execution of the find_next.

Note the values on the PDV.

Figure 40

The figure to right shows how
SAS escapes the loop.

When the pointer has read the
last observation for subject 14
the find_next returns a non-zero
value to the variable _IORC_.

That causes SAS to escape from
the while loop.

I wish it were possible to do
other examples that showed a
more complete, and practical,
use of the multiple valued hash
table.

However; time and space
required that I concentrate just
on the principles and hope that
this might ease the reader into
other papers or books. Dorfman
and Henderson have written the
definitive on SAS hashing and it
can be purchased from SAS
press.

Figure 41

29

EXAMPLE 9: A HAS REPLACING A PROC SUMMARY – AND A DATA STEP
In the figure to right you can see
code that allows a programmer
to eliminate a PROC Summary
by using a hash table.

As a 2nd process, inside the
same data step, the hash table
is used to apply logic that
requires information from the
summarization.
We will calculate some students
percentage of their age inside
their gender and use the
numbers form the Hash table as
the denominators.

I admit that this is a silly
example and I cannot find a
business reason for doing this
particular example. However; it
does show the power and
programming flexibility of hash
tables.

Figure 42

Please note the use of suminc: (immediately above the yellow box in Figure 42). After the suminc:, we must code a character
string/expression which will be used as the name of a data step variable whose value is to be aggregated. This variable will
be part of the hash table. It is not going to be part of the data section of a hash entry. Memory, behind the scenes
(whatever that means) is reserved in which SAS will sum the values of the named variable.

Note these limitations on aggregating using the hash table.
First: Only one variable can be summed.
Second: Since this is being aggregated “behind the scenes” it cannot be accessed via “normal” SAS code. A method must
be used to retrieve this value.

30

The figure to write shows how
the code creates the PDv and
the structure for the hash table.

You can think of the code inside
the gold box as having 2
sections. The 1st section creates
the hash table. The 2nd section,
the do while, reads the file
SASHelp.class into the hash
table.

The code inside the gold block
only executes one time.

Figure 43

The figure to right shows the 1st
observation flowing through the
P DV and into the hash table.

Note the use of SumInc. as the
table was defined.

Figure 44

31

The figure to right shows how
the 2nd observation, for a
female, creates a 2nd entry in
the hash table.

Figure 45

This figure to right jumps to the
end of the loading process.

All of the rows in sass
help.class have been processed
and the hash object now
contains the denominators we
will need to calculate our
percentages.

We are going to do a rather silly
operation. We’re going to
calculate each persons age as
a percentage of the total ages
for their group.

Figure 46

32

The figure to write shows the 1st
use of the hash table to provide
denominators for our
calculation.

Alfred is a male that causes the
recall of 134 to the variable
age.sum. 14 is divided by 134
giving .104 and that number is
output to the file named
J1_cool.

Figure 47

The figure to write shows the 3rd
observation in SASHelp.class
being processed

Figure 48

33

EXAMPLE 10: THE REPLACE STATEMENT

In this example we want to
track a sales representatives
activities. We want to build a
variable called Hist that tells us
the type of physician the
salesperson visited upon and
the date of the visit.

We are going to build a string
that gets longer and longer and
were going to limit that string to
90 characters by coding

length Hist $90;.

To right, please see all the
code. Future figures will show
details of execution.

This is another silly example.
Often silly examples are hard to
understand. I could not think of
a new situation where this
technique would be used to
solve an important and
common business need.

Figure 49

The figure to right shows the
creation of the hash table and
that we are reading the file
SalesCalls.

HOV stands for History of Visits

If we do not find the rep in the
hash table we create a variable
called HIST on the program
data vector and then move that
variable (HOV.Add) into the
hash table.

This figure illustrates what
happens when a rep is not
already in the hash table.

Tier and date are concatenated
and then added to the hash
table name HOV.

Figure 50

34

The figure to right shows a 2nd
sales rep being added to the
hash table.

Bo was not in the table.

Tier and date are concatenated
and then an element is created
for Bo.

Figure 51

This figure illustrates the
processing for the 2nd time we
have seen Ahmed.

We need to recall Ahmed’s
information from the hash table
into the PDV so that we can
update it.

The find statement finds
Ahmed and returns the data
part of his element from the
hash table to HIST in the PDV.

Figure 52

35

This figure shows the rest of
the processing for Ahmed.

SAS strips blanks from the
value in HIST and then
concatenates information from
the variables Tier and date on
the PDV into a new value for
HIST.

Then SAS uses the replace
method to replace the
Ahmed’s old data in the hash
table with the value of hist on
the PDV.

Figure 53

EXAMPLE 11: A HASH OF HASHES
I’ve shown many examples of
hash tables without showing
one important fact. When you
create a hash table, SAS will
create “invisible” variables on
the PDV so that it can perform
necessary operations.

Creating a hash of hashes
requires some understanding
of these “invisible” variables.

In the figure to right, I started
the debugger (if you want to
learn more about the
debugger, google “animated
lavery debugger SAS”) so that
I could look at variables on the
PDV.

The left-hand side of the figure
shows the code I wrote. Note
the 2 colored underlinings I
added for this figure.

Figure 54

On the right-hand side of the figure you can see the output from the data step debugger. I asked the debugger to describe all
the variables on the PDV. It found all the variables including the variable named age, which is the hash object I created, and
the variable Itr4H which is the hash iterator method associated with the hash table named H. Both of these are defined as
character with length 0. They are different from “regular SAS variables and are really pointers to objects.

36

The hash table, and the hash iterator, are objects (you might have heard about object oriented programming) and these two
objects exist in RAM independent of the PDV. The way SAS will communicate with these objects is through these two
variables, H and Itr4H, on the PDV. These two variables will contain memory pointers (the memory locations in RAM) for the
two objects.

Since these variables are pointers to places in RAM, they are not considered character or numeric variables and things like
the Debugger, developed long ago, has a bit of trouble dealing with them. Because these variables are intended to be
invisible, SAS just says they are character of length 0. I guess that SAS figures that anybody who knows enough to start up
the debugger and ask for these variables has some idea of what they really are. In summary, the debugger can find these
variables on the PDV.

In the bottom half of the right-hand side I ask SAS to print out the values of all the variables on the PDV. The debugger says
it cannot print object type variables. It can only print character and numeric variables. In summary; the debugger can find
these variables on the PDV, but cannot print their values.

I offer Figure 54 as support for my statement that the PDV has invisible variables that are used to control hash tables.

The figure to right shows the
code that we are going to use
in this example.

The code will do no useful
work and only illustrates the
creation of a hash of hashes.

A hash of hashes describes
the situation where a hash
table entry is a pointer to
another hash table (plus some
coded logic to support use).

Because this code creates a
RAM resident data storage it
can, in the hands a creative
programmer, make for fast
execution of business logic.

Remember accessing data in
RAM is typically thought of as
being 20,000 times faster than
accessing data on disk.

Figure 55

Part of the difficulty in understanding a hash of hashes is the execution sequence is unusual. Some of the commands are
intended for the SAS compiler and some of the commands are intended for SAS execution. Some of the commands are
intended for both SAS compile and execution.

The figure above shows step one executing and creating two files. The rest of the code will load these 2 files into hash
objects and then, simply, query them for some characteristics (number of rows).

The compile actions are in the green—ish color above.
Item 2 creates the PDV from the header information associated with a table SASHelp.class.
Item 3 adds a variable. DataName, to the PDV.
Item 4 adds HOH to the PDB and, I think, creates a SAS table placeholder at the RAM address loaded into the PDV.
Item 5 adds Hash_pointer to the PDV and, I think, creates a placeholder at some address in RAM.
Item 8 adds a variable calledI_HOH to the PDV and creates that object in RAM. I_HOH contains a pointer to the memory
address for that hash object.

The run actions are in red.
Item 4 establishes the structure (both key and data) of the hash object named HOH and establishes links between the object
and the PDV.
Item 6 adds a value to the variable DataName on the PDV and that value is “girls”.
new is a runtime command that creates a new hash object. It gets the data for this new hash object from the data set girls.

37

The last statement in section 6 (HOH.Add();), takes variables from the PDV and uses them to create an entry in that hash
object named HOH.

Item 7 adds a value to the variable DataName on the PDV and that value is “girls”.
new is a runtime command that creates a new hash object. It gets the data for this new hash object from the data set girls.
The last statement in section 6, takes variables from the PDV and uses them to create an entry in that hash object named
HOH.

I suggest that the explanation, while necessary, is pretty confusing and will try and illustrate the steps involved in a hash of
hashes in the figures to follow.

This figure illustrates the
compile actions.
If 0 then set
SAShelp.class
is a trick to create variables on
the program data vector.
The length statement also is
used to create a variable on
the program data vector. The
next statement tells SAS to
create a variable on the PDV.

The pink code in this slide is
runtime code and, honestly,
the exact timing of this eludes
me. When the pink code is run
it will create the hash object
named HOH.

I think the green, at run time,
might assign the memory
location to that hash object –
but I’m not really sure. On this
slide I show step 4 also
creating a spot in memory that
will hold the hash object HOH.

Figure 56

Star 5 illustrates the effect of declaring a hash object with the name of Hash_pointer. This creates a spot on the PDV, but
because of the coding done, does not create a memory location. We are going to create a hash object called girls and
another hash object called boys. They will exist in memory. Hash_pointer will be used to point to those memory locations.
Loading different memory locations into the variable named Hash_pointer will allow us to point to different hash objects.

Star 8 shows where SAS creates a variable on the PDV that will be used to control the iterator for the hash object named
HOH. The iterator is a subroutine that is created to allow us to access, sequentially, elements of the hash table. A hash
iterator is an object that resides in memory and the variable i_hoh, on the PDV, points to the memory location for the iterator.
Having a memory location on the PDV allows SAS to access that iterator. Think of the iterator as being a subroutine and this
tells SAS where the subroutine is resident in memory.

38

This slide starts to show the
run time actions involved in a
hash of hashes.

When star 4 executes it tells
the hash object named HOH
that it should get key
information from a variable on
the PDV with the name of
DataName and it should
exchange information about
the data values in the hash
object called HOH with
variables called DataName,
HOH and HashPointer.

I show the variable HOH taking
the value “MemLoc=36 to
indicate that it is a pointer and
it’s actually pointing to the spot
in memory where SAS has
placed the hash object named
HOH.

Figure 57

This slide shows the run time
execution of star 6 on Figure
55. Figure 55 shows all the
code.

DataName is assigned a value
girls.

New is a run time command
that creates a hash object while
code is executing (not
compiling). It creates a hash
object with the name of girls at
a position defined by SAS (here
MEMLOC=500).

DefineKey and DefineData
establish, during run time, the
relationship between variables
on the PDV and characteristics
of the hash object (key and data
).

Note that the HOH.add stores,
in HOH, the address in memory
of the hash table named girls.

Figure 58

39

This slide shows the run time
execution of star 7 on Figure
55.

Data name is assigned a value
boys.

New is a run time command
that creates a hash object while
code is executing (not
compiling).
It creates a hash object with the
name of boys at a position
defined by SAS (here
MEMLOC=200).

DefineKey and DefinedData
establish, during run time, the
relationship between variables
on the PDV and characteristics
of the hash object (key and
data).

Note that the HOH.add stores,
in HOH, the address in memory
of the hash table boys.

Figure 59

The iterator object, named
I_HOH, executes in a while
loop.

The next method will position,
initially to the 1st element of the
hash object so it finds, in HOH,
the element for girls.

It returns the memory location
for girls to the hash_pointer on
the PDV this makes girls, at
memory location 500, the
“active” hash object.

SAS executes the method NUM
items (which is a little
subroutine that returns the
number of items in a hash
object) against the hash object
that’s located in memory
position 500.

Girls has 3 elements and so a 3
is stored in the variable items
on the program data vector.

Figure 60

40

When next() next executes, it
returns the elements in HOH
from the element with the key
boys.

This returns the data part of the
boys element in HOH to the
program data vector. The value
of hash_pointer is now 200.

You can think of the fact that the
value of hash pointer is now 200
has as making boys the active
hash object for all subsequent
actions.

SAS now runs the subroutine
NUM items against the hash
object whose location can be
found in the PDV in the variable
named hash_pointer.

This returns a 2 to the variable
items. The loop would escape
on the next attempt to read from
the hash object HOH.

Figure 61

CONCLUSION
This is a time of great competitive change. We need to make our SAS programs faster to so that our companies will continue
to use SAS and SAS programmers. We need to learn the new techniques in order to allow ourselves, and the programs we
write, to compete in the IT world. We need to provide value to our customers and hashing can allow us to write faster running
programs and provide more value to clients.

Thanks to Paul Dorfman, Don Henderson, Richard DeVenezia , Robert Ray and Jason Secosky.

CONTACT INFORMATION
Your comments and questions are valued and encouraged.:
Russell Lavery, Independent Contractor for Numeric Resources
Email: russ.lavery@verizon.net

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in
the USA and other countries. ® indicates USA registration.
Other brand and product names are trademarks of their respective companies.

41

Appendix:

Above is an approximate (very dated) graphic of how the PROC SQL optimizer decides if it should use a hash table in a join.
For more information please see The SQL Optimizer Project: _Method and _Tree in SAS®9.1
(https://www.lexjansen.com/phuse/2007/cs/CS11.pdf) This is a fifty page paper and I do not think it is worth studying.
However the first 8 pages, where an overview of the optimizer is described, might be of interesting.

