

1

Invoking Google Maps with SAS® to Determine Driving Distances

Michael A. Raithel, Westat, Inc.

ABSTRACT

SAS programmers are sometimes asked to determine the distance between addresses.

Perhaps we are trying to establish which study subject persons are within a specific distance

of an interviewer. Maybe we want to identify existing establishments such as doctors

offices, hospitals, clinics, or pharmacies that are a reasonable distance from study subjects.

Such distances are often measured in absolute terms; such as all of the doctor offices within

50 miles of a subject. But, straight-line, as-the-crow-flies, distances do not account for

geographical and infrastructure features such as mountains, rivers, lakes, and existing

highways and surface roads. Consequently, driving distances may be more reliable than

absolute distances.

When many of us want to get from Here to There, we invoke Google Maps, plug in the

address for Here, plug in the address for There, and hit ENTER. Google Maps then returns

some routes to our destination as well as the driving distances for each route. So, Google

Maps provides an existing engine for determining driving distances between two points. And

by their very nature, driving routes must take geography and transportation infrastructure

into account.

This paper presents a SAS macro program that invokes Google Maps to calculate driving

distances between pairs of addresses. Start and End addresses are input via an Excel

spreadsheet, so any practical number of driving distances can be computed in a single run

of the program. SAS programmers can copy the macro program from Appendix C of this

paper and begin using it right away.

INTRODUCTION

There are several SAS language constructs that can help you determine the distance

between two points:

 The GEODIST function allows a programmer to determine the distance between two

sets of Latitudes and Longitudes. If you do not have lattitudes and longitudes, you

can calculate them with SAS:

o PROC GEOCODE can be used to compute the Latitude and Longitude of a

street address

 The ZIPCITYDISTANCE function can be run to find the distance between two Zip

codes

Programs that calculate the straight-line distance between pairs of zip codes, lattitutes and longitudes,
or street addresses generally do not account for geographic features and transportation infrastructure.
But, geographic features such as mountains, bays, rivers, and lakes can have a significant influence on
establishments people actually willing to access. Available transportation infrastructure such as
highways, bridges, and surface roads can have a similar influence on the destinations people will really
travel to. For example, consider Figure 1.

2

Figure 1 – Addresses within a 30-mile radius of Baltimore.

Computing all medical practices within a 30-mile radius of Baltimore, Maryland would net

those located in Chestertown, which is 29.66 straight-line miles away. However, residents of

Baltimore may not be willing to drive the actual 68.82 miles to get to such facilities. They

are more likely to visit medical practices that fall within a more reasonable driving distance.

The Google Maps Driving Distance Search Macro program invokes the Google Maps API to

capture the driving distance between two addresses. The macro can be used to compute the

distance between multiple pairs of addresses. The output is written to an Excel file that

analysts can then use to determine the optimal driving distances between two points.

The next section of this paper provides an overview of the Google Maps Driving Distance

Search macro. Subsequent sections describe what the SAS code in each of the five

segments of the macro program is doing. The paper then provides information on how you

can operationalize the macro in your own organization. It ends with a summarization of the

main points, and then several appendix. Note that Appendix C contains the entire SAS

Data Set Characterization Macro program.

3

OVERVIEW OF THE GOOGLE MAPS DRIVING DISTANCE SEARCH

MACRO

The Google Maps Driving Distance Search Macro requires two parameters:

 EXCELFIL - The full path to the input Excel file containing Start/End addresses

 OUTDIR - The directory where the output Excel results file will be written

The Excel input file specified by EXCELFIL should have the following eight columns:

 STARTNAME - The name of the originating person or establishment--e.g. Jim

Smith

 STARTADDRESS - The street address of the originating person or establishment

 STARTCITY - The name of the originating city

 STARTSTATE - The originating state abbreviation--e.g. MD

 ENDNAME - The name of the destination person or establishment--e.g. City

Medical Center

 ENDADDRESS - The street address of the destination person or establishment

 ENDCITY - The name of the destination city

 ENDSTATE - The destination state abbreviation--e.g. MD

The columns must be in the same order as above, have the column names as above, and

each column must have a valid address value in it. Appendix A, The Google Maps Driving

Distance Search Macro Input Excel File, has a screen capture of an example Excel input file.

The macro program produces an Excel report file with up to four tabs:

 Shortest Drives - The shortest driving distances between the Start/End addresses

 Longer Drives - The longer driving distances between the Start/End addresses

 Bad Addresses - Incomplete Start or End addresses that were in the input Excel file

that would not work with Google Maps

 Google Maps Couldn’t Find – Google Maps could not compute the distance for

some reason. It could be that it could not find either the Start or End address or

some other reason; such as attempting to drive from one Hawaiian island to another.

Appendix B, Example of a Report Generated by the Google Maps Driving Distance Search

Macro, holds an example of the output of the macro.

The next five sections of this paper discuss the SAS code found in the five parts of the

macro program.

4

PART 1 – INPUT THE EXCEL FILE AND WEED OUT ENTRIES THAT

HAVE MISSING COLUMNS

This section begins by allocating the input Excel file with a LIBNAME statement using

SAS/Access Interface to PC File Formats software. Next, a DATA _NULL_ step captures the

name of the Excel file’s worksheet and stores it in a macro variable named SHEETNAME for

future use. Then, the name of the Excel file is stored in macro variable EXCELNAME. This is

done because the output report file’s name will include the actual name of the input Excel

file. See Figure 2.

Figure 2 – Part 1 – Screenshot 1 of 3.

Part 1 continues with a DATA step that first weeds out invalid addresses. Address pairs that

are missing any one of the required eight columns are written to the BadAddresses SAS

data set and the counter variable BadCount is incremented. See Figure 3.

Figure 3–Part 1 – Screenshot 2 of 3.

5

Address pairs with non-missing column values are transformed into two variables—

FromAddress and ToAddress—by concatenating the relevant address, city, and state

variables. During the concatenations, the TRANWRD function is used to have a “+” sign

replace the blank spaces within the start/end address and city variables. The DATA step

ends by creating the aptly-named GoodAddressCount and BadAddressCount macro

variables. Those variables will be instrumental in future processing. See Figure 4.

Figure 4–Part 1 – Screenshot 3 of 3.

At this point, we potentially have two SAS data sets: AddressFile which contains entries

from the Excel file that have values in the eight columns; and BadAddresses, which contains

entries that were missing values in one or more of the eight columns. We will use the

observations in AddressFile in our calls to Google Maps, while observations in BadAddresses

will simply be written to the report file.

PART 2 - MAIN LOOP TO PROCESS EACH START/END

(FROMADDRESS/TOADDRESS) ADDRESS PAIR WITH GOOGLE

MAPS

This part is the main loop that processes each Start/End (FromAddress/ToAddress) address

pair found in the AddressFile SAS data set with Google Maps. It is composed of two DATA

steps with a FILENAME statement sandwiched between them. The macro loop is executed

once for each unique Start/End address pair found in the AddressFile SAS data set.

This section starts with a DATA _NULL_ step that creates four macro variables:

FromAddress, ToAddress, StartName, and ENDNAME. The first two will be used in the

subsequent FILENAME statement which will invoke Google Maps. Note that the POINT=

6

option is used on the SET statement so that we can process each individual observervation

of the AddressFile SAS data set in each subsequent iteration of the main macro loop that

counts from 1 to %GoodAddressCount. See Figure 5.

Figure 5 – Part 2 – Screenshot 1 of 3

The second DATA step in Part 2 begins with some housekeeping. Lengths, labels, and

formats are specified for the important variables. Next, an INFILE statement invokes the

previouly declared FILENAME statement to use the URL method and execute Google Maps

over the Internet. The subsequent IF statement limits incoming records to only those which

contain the text string “miles.”

Next, we find the exact position of the word “miles”; and then subtract one from that to get

the space before the word “miles.” Armed with that information, we scan the substring to

get the number that is right before the word “miles.” That number is the distance between

the two addresses that was returned by Google Maps. See Figure 6.

IMPORTANT NOTE: This DATA step can take up to 30-seconds to execute per invocation

of Google Maps for a given Start/End address pair over the Internet. So, expect expanded

program execution times for runs where you are computing driving distances for large

numbers of addresses.

7

Figure 6 – Part 2 – Screenshot 2 of 3

Now it is time to determine whether Google Maps was able to find the addresses and

consequently determine the distance between them. This is done by checking whether we

successfully created one or more records in the DISTANCE SAS data set. We check

SASHELP.VTABLE and set the macro variable AnyGoogleHits equal to the number of

distance records now stored as observations. If AnyGoogleHits is greater than zero, we

concatenate the distance observations in DISTANCE to the AllDistances SAS data set. If

AnyGoogleHits is not greater than zero, Google did not return a distance. In that case, we

construct the two address and two name variables, and then append an observation to the

NoGoogleHits SAS data set. See Figure 7.

8

Figure 7 – Part 2 – Screenshot 3 of 3

We are now done with Part 2 of the program, and can go onto Part 3 which puts the

observations in the AllDistances SAS data set in reporting order.

PART 3 – GET THE OBSERVATIONS IN THE RIGHT ORDER AND

SPLIT THEM INTO TWO DATA SETS FOR REPORTS

Part 3 is only executed if Google Maps returned actionable records—records that are now

stored in AllDistances. We first sort AllDistances by five variables (StartName, StartAddress,

EndName, EndAddress, and DrivingDistance) to sort the driving distances from low to high

for each name/address pair. The variable DrivingDistance is not in the BY statement of the

second sort. Consequently, the first (shortest distance) observation for each unique

name/address pair is written to ShortDistances; while subsequent “duplicate” records for

9

the given name/address pair are written to the LongerDistances SAS data set. Thus, at the

end of this section, we have segregated the shortest distances into data set ShortDistances,

and the longer distances in data set LongerDistances. See Figure 8.

Figure 8 – Part 3 – Screenshot 1 of 1

PART 4 - CREATE THE EXCEL REPORT FILE WITH VARIOUS TABS

Part 4 starts by allocating the Excel report file in the directory specified by the &OUTDIR

macro parameter. Note that the report file’s name will include the name of the input Excel

file. This is done to keep report files distinct in cases where the macro program is run

against multiple Excel input files.

If the AnyGoogleHits macro variable is greater than zero, we create a worksheet named

“Shortest Drives” and PROC PRINT the observations from ShortDistances into the

worksheet. We also create a worksheet named “Longer Drives” and PROC PRINT the

observations from LongerDistances into that worksheet. See Figure 9.

10

Figure 9 – Part 4 – Screenshot 1 of 2

We next turn our attention to any bad addresses that may have been entered in the input

spreadsheet—the ones weeded out in Part 1. If the &BadAddressCount macro variable is

greater than zero, then we have Addresses in the BadAddress SAS data set. When that is

the case, we create a worksheet named “Bad Addresses” and write the observations in the

BadAddress SAS data set to the worksheet.

If Google Maps couldn’t determine a particular distance, we will have a NoGoogleHits SAS

data set. So, we check for the existance of said data set. If it exists, we create a worksheet

named “Google Maps Couldn’t Find It” and dump the observations into that worksheet.

The final act of Part 4 is to close the Excel worksheet. See Figure 10.

11

Figure 10 – Part 4 – Screenshot 2 of 2

Now, we can move on to Part 5.

PART 5 – CLEAN UP WORK LIBRARY FOR POSSIBLE MULTIPLE

SUBMISSIONS OF THIS MACRO

This part of the program performs some housekeeping that is only really necessary if we are

going to run the macro against multiple input Excel files. It uses the KILL option of PROC

DATASETS to clear out all files in the WORK library. Then, it clears all LIBNAMES. See

Figure 11.

12

Figure 11 – Part 5 – Screenshot 1 of 1

OPERATIONALIZING THE GOOGLE MAPS DRIVING DISTANCE

SEARCH MACRO

Here are some simple steps you can consider implementing to operationalize the Google

Maps Driving Distance Search Macro SAS program in your own environment.

1. Copy the macro from Appendix C into a SAS program on your computer. You can

save it in your autocall macro library or save it in a directory of your choosing. If you

put the macro in your autocall library, you can code the macro call directly in your

programs.

2. If you do not choose to put the program in one of your organization’s macro

libraries, take a look at Appendix D, which contains the Execute Google Maps Driving

Distance Search Macro SAS program. This is a driver program for the Google Maps

Driving Distance Search Macro SAS program. Simply copy the SAS code from

Appendix D to a SAS program in your environment. Then, update the %INCLUDE

statement in the driver program to specify the full path to where you placed the

utility macro.

3. Once you have “downloaded” the macro program and the driver program, simply

specify the two parameters in the macro call:

 EXCELFIL - The full path to the input Excel file containing Start/End addresses

 OUTDIR - The directory where the output Excel results file will be written.

…and execute the macro to create your consolidated SAS data set report. Note that

you should not put quotes around the value of either parameter; the program will do

that work for you.

Either of these two methods—macro autocall library, or %INCLUDE—should make the

Google Maps Driving Distance Search Macro convenient to use.

CONCLUSION

This paper introduced the Google Maps Driving Distance Search Macro program; which can

be used to determine the distance between a set of Start/End addresses. The program

requires that you specify an Excel file holding the Start/End address pairs and specify the

13

directory where you want the report file to be written. The program creates an Excel output

file with up to four reports: Shortest Drives, Longer Drives, Bad Addresses, and Google

Maps Couldn’t Find.

The Google Maps Driving Distance Search Macro program is ideal for creating a report of

driving distances between pairs of addresses. Consider how this program can be of help

when you need to determine practical driving distances for a project in your own

organization.

REFERENCES

Raithel, Michael A. 2017. Did You Know That? Essential Hacks for Clever SAS

Programmers: Over 100 Essential Hacks to Make Your Programs Leaner, Cleaner, and More

Competitive. Bethesda, Maryland: Michael A. Raithel

Available: http://www.amazon.com/Michael-A.-

Raithel/e/B001K8GG90/ref=ntt_dp_epwbk_0

Smith, Laurie (2018). Macro Method to use Google Maps™ and SAS® to Geocode a Location

by Name or Address.

Proceedings of the SAS Global Forum 2018 Conference.

Available: https://www.sas.com/content/dam/SAS/support/en/sas-global-forum-

proceedings/2018/2684-2018.pdf

Bekkerman, Anton (2013). Going the Distance: Google Maps Capabilities in a Friendly SAS

Environment. Proceedings of the Western Users of SAS Software 2013 Conference.

Available: https://www.lexjansen.com/wuss/2013/100_Paper.pdf

Zdeb, Mike (2010). Driving Distances and Times Using SAS® and Google Maps.

Proceedings of the SAS Global Forum 2010 Conference.

Available: http://support.sas.com/resources/papers/proceedings10/050-2010.pdf

ACKNOWLEDGMENTS

Thanks and recognition go to Laurie Smith, Anton Bekkerman, and Mike Zdeb for their solid

pioneering work on harnessing the power of Google Maps with SAS. Thanks are also due to

Westat Senior Systems Analyst Raghav Adimulam for helping the author develop and test

the macro. Finally, the author would like to thank Westat management for supporting his

participation in SAS user group meetings and conferences.

RECOMMENDED READING

 The GEODIST Function: SAS Help Center: GEODIST Function

 PROC GEOCODE: SAS Help Center: Overview: PROC GEOCODE

 The ZIPCITYDISTANCE Function: SAS Help Center: ZIPCITYDISTANCE Function

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Michael A. Raithel

michaelraithel@westat.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or

trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA

registration.

http://www.amazon.com/Michael-A.-Raithel/e/B001K8GG90/ref=ntt_dp_epwbk_0
http://www.amazon.com/Michael-A.-Raithel/e/B001K8GG90/ref=ntt_dp_epwbk_0
https://www.sas.com/content/dam/SAS/support/en/sas-global-forum-proceedings/2018/2684-2018.pdf
https://www.sas.com/content/dam/SAS/support/en/sas-global-forum-proceedings/2018/2684-2018.pdf
https://www.sas.com/content/dam/SAS/support/en/sas-global-forum-proceedings/2018/2684-2018.pdf
https://secure-web.cisco.com/1e0kNbe8VXK1EdSfRSgNeYyXqYSWuBshpRKsj-hy6uE3czftTFWOaN92ssJKIFPNGSJNPrpbkaC8aaEqnotKl2Z_Epwo5APLMJgUz4P17jq7OBtEFkdKWVVEmXKYipeG0kMGyzz9Tv6caR4rqGz20dsAQbtbFHeY4xy9WTecoucQN9gLEGPTVbKK8j1cgtsrm0LpowGjVdfKfdB7SuscgSi4RPLRT1Ff8y-PvFmSf0L-XYGaVFwmILY3bV6NA2iVz/https%3A%2F%2Fwww.lexjansen.com%2Fwuss%2F2013%2F100_Paper.pdf
https://secure-web.cisco.com/1e0kNbe8VXK1EdSfRSgNeYyXqYSWuBshpRKsj-hy6uE3czftTFWOaN92ssJKIFPNGSJNPrpbkaC8aaEqnotKl2Z_Epwo5APLMJgUz4P17jq7OBtEFkdKWVVEmXKYipeG0kMGyzz9Tv6caR4rqGz20dsAQbtbFHeY4xy9WTecoucQN9gLEGPTVbKK8j1cgtsrm0LpowGjVdfKfdB7SuscgSi4RPLRT1Ff8y-PvFmSf0L-XYGaVFwmILY3bV6NA2iVz/https%3A%2F%2Fwww.lexjansen.com%2Fwuss%2F2013%2F100_Paper.pdf
http://secure-web.cisco.com/1wactgd8T3LKxyRpOf6pRVc29Prj1Xibgfnr9PwQ4BK7RdHSaoKEgAEYOEZuhydDhRYrsakCxcr7r6PV8kBUIQTuEqnHu18W2CYCQ8P96XjB8OSOhUBkjsWxiRr76vRdzvwC2A0lvI00zV-5dyjRAu82Zbnb5qmGhUi9ykqITC7-F0b9R46kDmZhD3zRSjb1TJXVA427kOTqTCaUOwRUuQ1Cyxwxg3giqHuCg8F__0KAAgLVceuTbuMaD2GiW6-dG/http%3A%2F%2Fsupport.sas.com%2Fresources%2Fpapers%2Fproceedings10%2F050-2010.pdf
http://secure-web.cisco.com/1wactgd8T3LKxyRpOf6pRVc29Prj1Xibgfnr9PwQ4BK7RdHSaoKEgAEYOEZuhydDhRYrsakCxcr7r6PV8kBUIQTuEqnHu18W2CYCQ8P96XjB8OSOhUBkjsWxiRr76vRdzvwC2A0lvI00zV-5dyjRAu82Zbnb5qmGhUi9ykqITC7-F0b9R46kDmZhD3zRSjb1TJXVA427kOTqTCaUOwRUuQ1Cyxwxg3giqHuCg8F__0KAAgLVceuTbuMaD2GiW6-dG/http%3A%2F%2Fsupport.sas.com%2Fresources%2Fpapers%2Fproceedings10%2F050-2010.pdf
https://documentation.sas.com/doc/en/pgmsascdc/9.4_3.5/lefunctionsref/n1korpfg2e18lon1nwpow9qijdxe.htm
https://documentation.sas.com/doc/en/pgmsascdc/9.4_3.5/grmapref/n02y3yabtlqatsn16gp2fo51yo7p.htm
https://documentation.sas.com/doc/en/pgmsascdc/9.4_3.5/lefunctionsref/n1r333fdkrofhxn10vmhu9bq5m85.htm

14

Other brand and product names are trademarks of their respective companies.

APPENDIX A – THE GOOGLE MAPS DRIVING DISTANCE SEARCH

MACRO EXCEL INPUT FILE

StartName StartAddress StartCity StartState EndName EndAddress EndCity EndState

APPENDIX B – EXAMPLE OF A REPORT FILE GENERATED BY THE

GOOGLE MAPS DRIVING DISTANCE SEARCH MACRO

15

APPENDIX C – THE GOOGLE MAPS DRIVING DISTANCE SEARCH

MACRO.SAS

/**/

/* Program: Google Maps Driving Distance Search Macro.sas */

/* */

/* Author: Michael A. Raithel and Raghav Adimulam */

/* */

/* Created: 12/07/2021 */

/* */

/* Purpose: This SAS program reads an Excel file of Start/End street address pairs and uses Google */

/* Maps to find the driving distance between them. */

/* */

/* The Excel spreadsheet should have the following columns: */

/* */

/* StartName - The name of the originating person or establishment--e.g. Jim Smith */

/* StartAddress - The street address of the originating person or establishment */

/* StartCity - The name of the originating city */

/* StartState - The originating state abbreviation--e.g. MD */

/* */

/* EndName - The name of the destination person or establishment--e.g. City Med Center */

/* EndAddress - The street address of the destination person or establishment */

/* EndCity - The name of the destination city */

/* EndState - The destination state abbreviation--e.g. MD */

/* */

/* Parameters: Users must specify the following two parameters: */

/* */

/* EXCELFIL - The full path to the input Excel file containg Start/End addresses */

/* OUTDIR - The directory where the output Excel results file will be written */

/* */

/* NOTE: Do NOT enclose either of the two parameter inputs in quotes when invoking */

/* the macro */

/* */

/* Outputs: This program creates an Excel spreadsheet named "Driving Distances Report for <<Name of */

/* Input Excel Spreadsheet>>".xlsx that can have up to four tabs: */

/* */

/* Shortest Drives - The shortest driving distances between the Start/End addresses */

/* Longer Drives - The longer driving distances between the Start/End addresses */

/* Bad Addresses - Problematic Start or End Address that won't work with Google Maps */

/* Google Maps Couldn't Find - Google Maps couldn't find either the Start or End address */

/* */

/* NOTE: Google Maps often returns 2 or 3 distances; that is why successful searches are */

/* segmented into the Shortest Drives and the Longer Drives tabs. */

/* */

/* Change Log: */

/* */

/**/

%MACRO GETDIST(EXCELFIL=,OUTDIR=);

/**/

/* Part 1 */

/**/

/* Input the Excel file and weed out entries that have missing columns. */

/**/

LIBNAME exfile pcfiles path="&EXCELFIL" access=readonly;

/* Get the Excel sheet name and store in a macro variable */

data _null_;

set sashelp.vtable(where=(libname= "EXFILE"));

call symput("SHEETNAME",strip(memname));

run;

/* Obtain the name of the input Excel file to use as part of the output Excel report file name */

%LET EXCELNAME=%SCAN(&EXCELFIL,-2,.\);

/* Import the Excel file and put a "+" between spaces for future calls to Google Maps */

data AddressFile

 BadAddresses(drop=FromAddress ToAddress);

set EXFILE."&SHEETNAME"n end=eof;

retain GoodCount BadCount 0;

drop GoodCount BadCount;

16

/* Check for invalid addresses that will not work with Google Maps */

if missing(StartAddress) or

 missing(StartCity) or

 missing(StartState) or

 missing(EndAddress) or

 missing(EndCity) or

 missing(EndState) then do;

 BadCount + 1;

 output BadAddresses;

end;

 /* Only valid addresses pass this point*/

 else do;

 FromAddress = tranwrd(strip(StartAddress)," ","+")||","||

 tranwrd(strip(StartCity)," ","+")||","||

 strip(StartState);

 ToAddress = tranwrd(strip(EndAddress)," ","+")||","||

 tranwrd(strip(EndCity)," ","+")||","||

 strip(EndState);

 Goodcount + 1;

 output AddressFile;

 end;

/* Store the number of Good/Bad addresses in Macro variables for future use */

if eof then do;

 call symput("GoodAddressCount",GoodCount);

 call symput("BadAddressCount",BadCount);

end;

run;

/**/

/* Part 2 */

/**/

/* Main loop to process each FromAddress/ToAddress address pair with Google Maps. */

/**/

/* BEGINNING of Loop to read each FromAddress/ToAddress pair and run them against Google Maps */

%DO I = 1 %TO &GoodAddressCount;

/* Get each subsequent FromAddress/ToAddress pair and load them into macro variables */

data _null_;

whichobs = &I;

set AddressFile point=whichobs;

call symput("FromAddress", strip(FromAddress));

call symput("ToAddress", strip(ToAddress));

call symput("StartName", StartName);

call symput("EndName", EndName);

stop;

run;

/* Allocate Google Maps with the To/From address pair */

filename google url "http://maps.google.com/maps?daddr=&ToAddress.%nrstr(&saddr)=&FromAddress";

/* Execute the Google Maps FILENAME to get the distance between Start/End addresses */

data distance(drop=BigLine BeforeMiles);

length StartAddress EndAddress StartName EndName $100.;

label StartName = "Start Name"

 StartAddress = "Start Address"

 EndName = "End Name"

 EndAddress = "End Address"

 DrivingDistance = "Driving Distance"

 ;

format DrivingDistance comma12.;

17

* Invoke the Google Maps URL and read the resulting html input strings;

infile google recfm=f lrecl=10000;

input BigLine $10000.;

* Search html strings for the word miles, keep only those entries;

if find(BigLine,'miles');

* Set pointer variable to column just before the word 'miles';

BeforeMiles= find(BigLine,'miles') - 1;

* Scan the substring and keep the numeric value found right before 'miles';

DrivingDistance=input(compress(scan(substr(BigLine,1,BeforeMiles),1,' "','bc'),','),best12.);

* Create the other variables for the output file;

StartAddress = translate("&FromAddress"," ","+");

EndAddress = translate("&ToAddress"," ","+");

StartName = strip("&StartName");

EndName = strip("&EndName");

run;

/* Determine if the Google Map search got results */

data _null_;

set sashelp.vtable(where=(libname="WORK" and memname="DISTANCE"));

 call symput("AnyGoogleHits",nobs);

run;

/* Addresses that Google Maps finds are processed here */

%IF &AnyGoogleHits > 0 %then %do;

 * Append all distances to file for future reporting;

 proc append base=AllDistances data=distance;

 run;

%END;

 /* Addresses that Google Maps could not find are processed here */

 %ELSE %DO;

 data nohits;

 length StartAddress EndAddress StartName EndName $100.;

 label StartName = "Start Name"

 StartAddress = "Start Address"

 EndName = "End Name"

 EndAddress = "End Address"

 ;

 StartAddress = translate("&FromAddress"," ","+");

 EndAddress = translate("&ToAddress"," ","+");

 StartName = strip("&StartName");

 EndName = strip("&EndName");

 run;

 * Append addresses that did not get a hit on Google Maps to file for future reporting;

 proc append base=NoGoogleHits data=nohits;

 run;

 %END;

/* END of Loop to read each Start/End address pair and run them against Google Maps */

%END;

/**/

/* Part 3 */

/**/

/* Get the observations in the right order and split them into two data sets for reports*/

/**/

/* Only execute if there were successful Google Searches */

%IF &AnyGoogleHits > 0 %THEN %DO;

/* Keep observation with the shortest distance on "top" */

proc sort data=AllDistances;

 by StartName StartAddress EndName EndAddress DrivingDistance;

run;

/* Separate short distances from longer distances */

proc sort nodupkey data=AllDistances out=ShortDistances dupout=LongerDistances;

 by StartName StartAddress EndName EndAddress ;

18

run;

%END;

/**/

/* Part 4 */

/**/

/* Create the Excel report file with various tabs. */

/**/

/* Create the Excel Report File */

ODS EXCEL FILE="&OUTDIR.\Driving Distances Report for &EXCELNAME..xlsx";

/* Only execute if there were successful Google Searches */

%IF &AnyGoogleHits > 0 %THEN %DO;

/* Create the tab with shortest drive distances between the addresses */

ODS EXCEL options(sheet_name="Shortest Drives");

proc print noobs data=ShortDistances label;

var StartName StartAddress EndName EndAddress DrivingDistance;

title1 "Short Driving Distances Computed by Google Maps";

run;

/* Create the tab with other, longer drive distances between the addresses */

ODS EXCEL options(sheet_name="Longer Drives");

proc print noobs data=LongerDistances label;

var StartName StartAddress EndName EndAddress DrivingDistance;

title1 "Longer Driving Distances Computed by Google Maps";

 run;

%END;

/* This tab has any bad addresses found in the input Excel file */

%IF &BadAddressCount > 0 %THEN %DO;

 ODS EXCEL options(sheet_name="Bad Addresses");

 proc print noobs data=BadAddresses label;

 title1 "Problematic Addresses that Won't Work with Google Maps";

 run;

%END;

/* This tab has any addresses that did not return a hit using Google Maps */

%IF %SYSFUNC(EXIST(work.NoGoogleHits)) %THEN %DO;

 ODS EXCEL options(sheet_name="Google Maps Couldn't Find");

 proc print noobs data=NoGoogleHits label;

 title1 "Addresses Google Maps Could Not Find";

 run;

%END;

ODS EXCEL close;

/**/

/* Part 5 */

/**/

/* Clean up WORK library for possible multiple submissions of this macro. Clear all */

/* LIBNAMEs. */

/**/

proc datasets library=work kill noprint;

run;

quit;

libname _all_ clear;

%MEND GETDIST;

APPENDIX D – EXECUTE THE GOOGLE MAPS DRIVING DISTANCE

SEARCH MACRO.SAS

19

/**/

/* Program: Execute Google Maps Driving Distance Search Macro.sas */

/* */

/* Author: Michael A. Raithel and Raghav Adimulam */

/* */

/* Created: 12/07/2021 */

/* */

/* Purpose: This is the driver program for the Google Maps Driving Distance Search Macro program that*/

/* reads an Excel file of Start/End street address pairs and uses Google Maps to find the */

/* driving distance between them. */

/* */

/* The Excel spreadsheet should have the following columns: */

/* */

/* STARTNAME - The name of the originating person or establishment--e.g. Jim Smith */

/* STARTADDRESS - The street address of the originating person or establishment */

/* STARTCITY - The name of the originating city */

/* STARTSTATE - The originating state abbreviation--e.g. MD */

/* */

/* ENDNAME - The name of the destination person or establishment--e.g. City Med Center */

/* ENDADDRESS - The street address of the destination person or establishment */

/* ENDCITY - The name of the destination city */

/* ENDSTATE - The destination state abbreviation--e.g. MD */

/* */

/* Parameters: Users must specify the following two parameters in this driver program: */

/* */

/* EXCELFIL - The full path to the input Excel file */

/* OUTDIR - The directory where the output Excel results file will be written */

/* */

/* NOTE: Do NOT enclose either of the two parameter inputs in quotes when invoking */

/* the macro. */

/* */

/* Outputs: This program creates an Excel spreadsheet named "Driving Distances Report for <<Name of */

/* Input Excel Spreadsheet>>".xlsx that can have up to four tabs: */

/* */

/* Shortest Drives - The shortest drive distances between the Start/End addresses */

/* Longer Drives - The longer drive distances between the Start/End addresses */

/* Bad Addresses - Problematic Start or End Address that won't work with Google Maps */

/* Google Maps Couldn't Find - Google Maps couldn't find either the Start or End address */

/* */

/* NOTE: Google Maps often returns 2 or 3 distances; that is why successful searches are */

/* segmented into the Shortest Drives and the Longer Drives tabs. */

/* */

/* Change Log: */

/* */

/**/

options symbolgen mprint mlogic;

/**********************************/

/* Include the macro program. */

/**********************************/

%INCLUDE "<Put your directory address here>\Google Maps Driving Distance Search Macro.sas";

/***/

/* Execute the macro program. */

/***/

/* Do NOT put quotes around either input.*/

/***/

%GETDIST(EXCELFIL=,

 OUTDIR=);

