

Page 1

Under the Hood: The Mechanics of Various SQL Query

Optimization Techniques

Kirk Paul Lafler, @sasNerd, Spring Valley, California

Abstract

The SAS® software and SQL procedure provide powerful features and options for users to gain a better understanding of what’s
taking place during query processing. This presentation explores the fully supported SAS® MSGLEVEL=I system option and PROC
SQL _METHOD option to display valuable informational messages on the SAS® Log about the SQL optimizer’s execution plan as
it relates to processing SQL queries; along with an assortment of query optimization techniques.

Introduction

PROC SQL supports a powerful option called _METHOD. Since its implementation, many SAS
®
 SQL users have expressed very

favorable comments for the value-added information it provides on the SAS Log. In fact, the _METHOD option is worth
exploring simply due to the benefits associated with gaining a better understanding of the processes during specific PROC SQL
operations, query evaluation, algorithm selected by the optimizer and used in the processing of a query, or testing and
debugging operations.

Tables Used in Examples

The data used in all the examples in this paper uses the movies and actors data sets (tables). The Movies table, below, consists
of twenty-two observations (rows) and six variables (columns): Title, Length, Category, Year, Studio, and Rating. Title, Category,
Studio, and Rating are defined as character columns with Length and Year being defined as numeric columns.

The ACTORS data set (table) consists of thirteen observations (rows) and three variables (columns): Title, Actor_Leading, and
Actor_Supporting which are all character columns, and is illustrated below.

Under the Hood: The Mechanics of Various SQL Query Optimization Techniques, continued BASUG 2020

Page 2

Displaying Informational SAS Log Messages with MSGLEVEL=

SAS users can control how much information the SAS System writes to the SAS log by specifying the MSGLEVEL= SAS System

option in an Options statement. The MSGLEVEL= option supports two possible values: N (which is the default) to print standard

notes, warnings, and error messages; and I to print standard notes, warnings, error messages, plus additional information

about sort, merge, and index processing. When specifying MSGLEVEL=I in an options statement, SAS displays the sort product
that was used in a sort operation, a warning when variables are overwritten during merge processing; and the name of the
available index that was used in index processing (or helpful suggestions on what can be done to influence SAS to use an
available index); along with the usual assortment of notes, warnings, and error messages.

To demonstrate the effect of a MSGLEVEL=I option statement the following example illustrates a simple SQL join query on two
tables, MOVIES and ACTORS. As shown in the resulting SAS Log, an informative message was generated explaining that the SAS

system chose to use an available index, Rating, to optimize WHERE clause processing. This use of the MSGLEVEL=I system
option provides users with a better understanding of what the SAS system did to improve processing, as well as the specific
name of the index that was selected during processing of the query.

SQL Code

OPTIONS MSGLEVEL=I ;
PROC SQL ;
 SELECT MOVIES.TITLE, RATING, LENGTH, ACTOR_LEADING
 FROM MOVIES,
 ACTORS
 WHERE MOVIES.TITLE = ACTORS.TITLE AND RATING = 'PG' ;
QUIT ;

Log Results

OPTIONS MSGLEVEL=I ;
PROC SQL ;
 SELECT MOVIES.TITLE, RATING, LENGTH, ACTOR_LEADING
 FROM MOVIES,
 ACTORS
 WHERE MOVIES.TITLE = ACTORS.TITLE AND RATING = 'PG' ;

INFO: Index Rating selected for WHERE clause optimization.

QUIT ;

PROC SQL Join Algorithms

When it comes to performing PROC SQL joins, users supply the names of the tables for joining along with the join conditions,
and the PROC SQL optimizer determines which of the four available join algorithms to use for performing the join query
operation. The four join algorithms available to the optimizer include:

 Nested Loop – A nested loop join algorithm may be selected by the SQL optimizer when processing small tables of
data where one table is considerably smaller than the other table, the join condition does not contain an equality
condition, first row matching is optimized, or using a sort-merge or hash join has been eliminated.

 Sort-Merge – A sort-merge join algorithm may be selected by the SQL optimizer when the tables are small to medium

size and an index or hash join algorithm have been eliminated from consideration.

 Index – An index join algorithm may be selected by the SQL optimizer when indexes created on each of the columns
participating in the join relationship will improve performance.

 Hash – A hash join algorithm may be selected by the SQL optimizer when sufficient memory is available to the system,

and the BUFFERSIZE option is large enough to store the smaller of the tables into memory.

Under the Hood: The Mechanics of Various SQL Query Optimization Techniques, continued BASUG 2020

Page 3

The _Method Option and Code Descriptions

The PROC SQL _METHOD option can be specified as an effective way to analyze a query process or for debugging purposes.
Processing information from the _METHOD option is automatically displayed on the Log using a variety of codes. The complete
list of codes available with the _METHOD option along with their corresponding descriptions is displayed in the following table.

Code Description

SQXCRTA Create table as Select.

SQXSLCT Select statement or clause.

SQXJSL Step loop join (Cartesian).

SQXJM Merge join operation.

SQXJNDX Index join operation.

SQXJHSH Hash join operation.

SQXSORT Sort operation.

SQXSRC Source rows from table.

SQXFIL Rows filtration.

SQXSUMG Summary stats (aggregates) with GROUP BY clause.

SQXSUMN Summary stats with no GROUP BY clause.

Application of the _METHOD Option

In the following example a _METHOD option is specified to show the processing hierarchy in a two-way equi-join. As illustrated
in the SAS Log, the PROC SQL optimizer utilized a hash join algorithm in the performance of the join query.

SQL Code

OPTIONS MSGLEVEL=I ;
PROC SQL _METHOD ;
 SELECT MOVIES.TITLE, RATING, ACTOR_LEADING
 FROM MOVIES,
 ACTORS
 WHERE MOVIES.TITLE = ACTORS.TITLE AND RATING = 'PG' ;
QUIT ;

Log Results

OPTIONS MSGLEVEL=I ;
PROC SQL _METHOD ;
 SELECT MOVIES.TITLE, RATING, LENGTH, ACTOR_LEADING
 FROM MOVIES,
 ACTORS
 WHERE MOVIES.TITLE = ACTORS.TITLE AND RATING = 'PG' ;
NOTE: SQL execution methods chosen are:
 sqxslct
 sqxjhsh
 sqxsrc(MOVIES)
 sqxsrc(ACTORS)

INFO: Index Rating selected for WHERE clause optimization.

QUIT ;

Under the Hood: The Mechanics of Various SQL Query Optimization Techniques, continued BASUG 2020

Page 4

SQL Query Optimization Techniques

A number of query optimization techniques are available to SAS and SQL users. We’ll explore a few of these optimization
techniques including STIMER / FULLSTIMER system options, SEELECT clause execution order, logic construction, and the
construction and application of indexes.

STIMER and FULLSTIMER System Options

When turned on, the STIMER and FULLSTIMER system options provide SAS and SQL users with measurable resource results
associated with CPU, I/O, memory, and data storage usage. The results provide users with a way to compare and contrast the
various techniques, and to explore and evaluate performance results to assist in achieving an optimal balance between
competing computer resources. The level of detail produced as a result of turning STIMER and FULLSTIMER system options on
can be seen from the following SAS Log results.

 Options STIMER;
NOTE: DATA statement used (Total process time):
 real time 0.04 seconds
 cpu time 0.03 seconds

 Options FULLSTIMER;

NOTE: DATA statement used (Total process time):
 real time 0.05 seconds
 user cpu time 0.03 seconds
 system cpu time 0.04 seconds
 memory 661.23k
 OS Memory 6768.00k
 Timestamp 09/16/2012 11:17:19 PM

SELECT Clause Execution Order

The SELECT statement’s purpose is to retrieve (or read) data from one, or more, underlying tables (or views). Although the
SELECT statement supports multiple clauses, only one clause is required – the FROM clause. All remaining clauses are optional
and only specified as needed. To help remember the specific order of the SELECT statement’s clauses, recite this phrase:

“SQL is fun when geeks help others”

The syntax order of the SELECT clauses are:

 PROC SQL ;

 SELECT . . .

 INTO . . .

 FROM . . .

 WHERE < OR > ON . . .

 GROUP BY . . .

 HAVING . . .

 ORDER BY . . . ;

 QUIT ;

 SELECT

 INTO

 FROM

 WHERE (or ON)

 GROUP BY

 HAVING

 ORDER BY

Under the Hood: The Mechanics of Various SQL Query Optimization Techniques, continued BASUG 2020

Page 5

Execution Order Description

1. FROM
The first clause executed in a query is the FROM clause. It’s a required clause with the purpose of
determining the working set of data that is being queried (i.e., variable names, variable type,
number of rows, and other important information).

2. INTO
The INTO clause is used to create one or more macro variables where the values can be used to
manipulate data.

3. ON
The ON clause is used to subset rows of data based on the condition(s) specified, and rows that
aren’t satisfied by the condition(s) are discarded.

4. WHERE (or ON)
The WHERE clause is used to subset rows of data based on the condition(s) specified, and rows that
aren’t satisfied by the condition(s) are discarded.

5. GROUP BY
The GROUP BY clause takes the rows that were subset with the WHERE clause and grouped based
on common values in the column specified in the GROUP BY clause.

6. HAVING
The HAVING clause applies the condition(s) to the grouped rows specified in the GROUP BY clause,
and any grouped rows that aren’t satisfied by the condition(s) are discarded.

7. SELECT Expressions specified in the SELECT statement are processed.

8. ORDER BY The ORDER BY clause sorts the rows of data in either ascending (default) or descending order.

Logic Construction

Logic conditions affect processing costs. The SQL optimizer evaluates a series of “ANDed” expressions in a WHERE (or ON) from
left to right. A chain of “ANDed” conditions should be specified with the most restrictive expression first. As a result, fewer
resources are spent by bypassing rows that do not satisfy the first conditional value in the WHERE (or ON) clause.

The Construction and Application of Indexes

Given the number of books and articles on SQL and SQL-related topics, I find it strange that there is not discussion related to
indexes and their impact on WHERE (and ON) clause processing. Certainly, these topics deserve additional attention in order to
assist SQL users’ improver their understanding in applying these powerful features in their application of database queries.

Understanding Indexes
What exactly is an index? An index consists of one or more columns in a table to uniquely identify each row of data within the
table. Operating as a SAS object containing the values in one or more columns in a table, an index is comprised of one or more
columns and may be defined as numeric, character, or a combination of both. Although there is no rule that says a table must
have an index, when present, they are most frequently used to make information retrieval using a WHERE (or ON) clause more
efficient.

Indexes are designed to improve the speed in which subsets of data are accessed. Rather than physically sorting a table (as
performed by the ORDER BY clause or the BY statement in PROC SORT), an index is designed to set up a logical data
arrangement without the need to physically sort it. This has the advantage of reducing CPU and memory requirements. It also
reduces data access time when using WHERE clause processing.

To help determine when an index is necessary, it is important to look at existing data as well as the way the base table(s) will be
used. It is also critical to know what queries will be used and how they will access columns of data. There are times when the
column(s) making up an index are obvious and other times when they are not. When determining whether an index provides
any processing value, some very important rules should be kept in mind. An index should permit the greatest flexibility so every
column in a table can be accessed and displayed. Indexes should also be assigned to discriminating column(s) only since query
results will benefit greatest when this is the case.

Under the Hood: The Mechanics of Various SQL Query Optimization Techniques, continued BASUG 2020

Page 6

Simple Rules to Know About Indexes
When an index is specified on one or more tables, a join process may actually be boosted. The PROC SQL processor may use an
index, when certain conditions permit its use. Here are a few things to keep in mind when creating an index:

 If the table is small, sequential processing may be just as fast, or faster, than processing with an index;

 Avoid creating more indexes than are absolutely necessary;

 If the page count, as displayed in the CONTENTS procedure, is less than 3 pages, an index may provide little or no
value;

 If the data subset for the index is large, sequential access may be more efficient than using the index;

 If the percentage of matches is 15% or less (known as the 15% rule) of the overall population then an index may be
beneficial;

 The costs associated with maintaining an index can outweigh its performance value, because an index is updated each
time the rows in a table are added, deleted, or modified.

Sample code is illustrated next to demonstrate the creation of simple and composite indexes using the CREATE INDEX
statement in the SQL procedure.

Creating a Simple Index
A simple index is specifically defined for one column in a table and must be the same name as the column. Suppose you had to
create an index consisting of movie rating (RATING) in the MOVIES table. Once created, the index becomes a separate object located
in the SAS library.

SQL Code

PROC SQL;
 CREATE INDEX RATING ON MOVIES(RATING);
QUIT;

SAS Log Results

PROC SQL;
 CREATE INDEX RATING ON MOVIES(RATING);

NOTE: Simple index RATING has been defined.
QUIT;

Creating a Composite Index
A composite index is defined for two or more columns in a table and must have a unique name that is different than the columns
assigned to the index. Suppose you were to create an index consisting of movie category (CATEGORY) and movie rating (RATING) in
the MOVIES table. Once the composite index is created, the index consisting of the two table columns become a separate object
located in the SAS library.

SQL Code

PROC SQL;
 CREATE INDEX CAT_RATING ON MOVIES(CATEGORY, RATING);
QUIT;

SAS Log Results

PROC SQL;
 CREATE INDEX CAT_RATING ON MOVIES(CATEGORY, RATING);

NOTE: Composite index CAT_RATING has been defined.
QUIT;

Under the Hood: The Mechanics of Various SQL Query Optimization Techniques, continued BASUG 2020

Page 7

Index Entries and Pointers
An index file is stored in the same SAS library as its associated data file. Having the same name as its data file, it is represented
as a separate entity known as an INDEX member type. An index file contains entries organized hierarchically with entries being
connected by pointers and organized in ascending order. Each entry contains a unique value corresponding to the column’s
frequency distribution and one or more unique observations, referred to as the record identifier (RID). Space that is occupied
by deleted values are automatically reclaimed and reused by the index. A sample index containing entries representing the
index file for the movie rating (RATING) is illustrated below.

Value Record ID (RID)

G 21

PG 2, 9, 14, 15, 18, 19

PG-13 3, 7, 8, 10, 12, 13, 22

R 1, 4, 5, 6, 11, 16, 17, 20

Index Limitations
Indexes can be very useful, but they do have limitations. As data in a table is inserted, modified, or deleted, an index must also
be updated by the SAS System to address any and all changes. This automatic feature requires additional CPU resources to
process changes to a table. Also, as a separate structure in its own right, an index can consume considerable storage space. As a
consequence, care should be exercised not to create too many indexes but assign indexes to the most discriminating variables
in a table.

Because of the aforementioned drawbacks, indexes should only be created on tables where query search time needs to be
optimized. Any unnecessary indexes may force the SAS System to expend unnecessary resources updating and reorganizing
after insert, delete, and update operations are performed. Also, select one or more columns to represent an index that has a
subset size of no more than 15% (or smaller) of the population data set. This is sometimes referred to as the 15% rule.

Optimizing Where (or ON) Clause Processing With Indexes
A WHERE clause defines the logical conditions that control which rows a SELECT statement will select, a DELETE statement will
delete, or an UPDATE statement will update. This powerful, but optional, clause permits SAS users to test and evaluate
conditions as true or false. From a programming perspective, the evaluation of a condition determines which of the alternate
paths a program will follow. Conditional logic in PROC SQL is frequently implemented in a WHERE clause to reference constants
and relationships between columns and data values.

To achieve the best possible performance from programs containing SQL procedure code, the SQL optimizer determines
whether any available index(es) will perform better than if it were to use more traditional sequential data access. Many users
incorrectly assume that an available index is automatically used with WHERE-clause processing, but this is not always the case.
In fact, WHERE-clause processing does nothing more than influence the SQL optimizer to take advantage of an index. When the
optimizer determines that an index will improve processing speeds, the index is used to direct activities related to data access.
Otherwise, the SQL optimizer uses the more traditional, and default, sequential data access method with WHERE-clause
processing.

Conclusion

SAS users are encouraged to learn and apply various optimization techniques when using SQL. From the MSGLEVEL=I SAS
System option, the _METHOD PROC SQL option, the STIMER and FULLSTIMER system options, understanding the SELECT clause
execution order, logic construction, and the application of indexes, users should become familiar with the application of these
incredible optimization techniques. When used, SAS and SQL users have effective tools to display useful information and
achieve greater insight into the processes performed during specific PROC SQL operations, including query evaluation, the
algorithm that is selected and used by the SQL optimizer in the processing of a query’s index, testing and debugging, and other
application processes.

References

Lafler, Kirk Paul (2019). PROC SQL: Beyond the Basics Using SAS, Third Edition, SAS Institute Inc., Cary, NC, USA.

Lafler, Kirk Paul (2016), “Triggering the SAS SQL Execution Plan,” Gateway Area of Users of SAS Software (GAUSS) 2016 Meeting,
Software Intelligence Corporation, Spring Valley, CA, USA.

Lafler, Kirk Paul (2013). PROC SQL: Beyond the Basics Using SAS, Second Edition, SAS Institute Inc., Cary, NC, USA.

Lafler, Kirk Paul and Charlie Shipp (2013), “Exploring the PROC SQL _METHOD Option,” Proceedings of the 2013 Western Users
of SAS Software (WUSS) Conference, Software Intelligence Corporation, Spring Valley, CA, USA.

 (Command Line)

Under the Hood: The Mechanics of Various SQL Query Optimization Techniques, continued BASUG 2020

Page 8

Lafler, Kirk Paul and Charlie Shipp (2013), “Exploring the PROC SQL _METHOD Option,” Proceedings of the 2013 MidWest SAS
Users Group (MWSUG) Conference, Software Intelligence Corporation, Spring Valley, CA, USA.

Lafler, Kirk Paul and Charlie Shipp (2013), “Exploring the PROC SQL _METHOD Option,” Proceedings of the 2013 NorthEast SAS
Users Group (NESUG) Conference, Software Intelligence Corporation, Spring Valley, CA, USA.

Lafler, Kirk Paul (2013), “Exploring the PROC SQL _METHOD Option,” Proceedings of the 2013 SAS Global Forum (SGF)
Conference, Software Intelligence Corporation, Spring Valley, CA, USA.

Lafler, Kirk Paul (2012), “Exploring the PROC SQL _METHOD Option,” Proceedings of the 2012 MidWest SAS Users Group
(MWSUG) Conference, Software Intelligence Corporation, Spring Valley, CA, USA.

Lafler, Kirk Paul (2010), “DATA Step and PROC SQL Programming Techniques,” Ohio SAS Users Group (OSUG) 2010 One-Day
Conference, Software Intelligence Corporation, Spring Valley, CA, USA.

Lafler, Kirk Paul (2009), “Exploring DICTIONARY Tables and SASHELP Views,” Proceedings of the 2009 South Central SAS Users
Group (SCSUG) Conference, Software Intelligence Corporation, Spring Valley, CA, USA.

Lafler, Kirk Paul (2009), “Exploring DICTIONARY Tables and SASHELP Views,” Proceedings of the 2009 Western Users of SAS
Software (WUSS) Conference, Software Intelligence Corporation, Spring Valley, CA, USA.

Lafler, Kirk Paul (2009), “Exploring DICTIONARY Tables and SASHELP Views,” Proceedings of the 2009 PharmaSUG SAS Users
Group Conference, Software Intelligence Corporation, Spring Valley, CA, USA.

Lafler, Kirk Paul (2008), “Kirk’s Top Ten Best PROC SQL Tips and Techniques,” Wisconsin Illinois SAS Users Conference (June 26
th

,
2008), Software Intelligence Corporation, Spring Valley, CA, USA.

Lafler, Kirk Paul (2008), “Exploring the Undocumented PROC SQL _METHOD Option,” Proceedings of the 2008 Western Users of
SAS Software (WUSS) Conference, Software Intelligence Corporation, Spring Valley, CA, USA.

Lafler, Kirk Paul (2007), “Undocumented and Hard-to-Find PROC SQL Features,” Proceedings of the 2007 NorthEast SAS Users
Group (NESUG) Conference, Software Intelligence Corporation, Spring Valley, CA, USA.

Lafler, Kirk Paul (2007), “Undocumented and Hard-to-Find PROC SQL Features,” Proceedings of the 2007 PharmaSUG
Conference, Software Intelligence Corporation, Spring Valley, CA, USA.

Lafler, Kirk Paul (2006), “A Hands-on Tour Inside the World of PROC SQL,” Proceedings of the 31
st

 Annual SAS Users Group
International Conference, Software Intelligence Corporation, Spring Valley, CA, USA.

Lafler, Kirk Paul (2004). PROC SQL: Beyond the Basics Using SAS, SAS Institute Inc., Cary, NC, USA.

Lafler, Kirk Paul (2003), “Undocumented and Hard-to-find PROC SQL Features,” Proceedings of the 2007 Western Users of SAS
Software (WUSS) Conference, Software Intelligence Corporation, Spring Valley, CA, USA.

Lafler, Kirk Paul (2002). PROC SQL Programming Tips; Software Intelligence Corporation, Spring Valley, CA, USA.

Shipp, Charles Edwin and Kirk Paul Lafler (2013), “Exploring the PROC SQL _METHOD Option,” Proceedings of the 2013 SAS
Global Forum (SGF) Conference, Software Intelligence Corporation, Spring Valley, CA, USA.

Acknowledgments

The author thanks the 2020 Boston Area SAS Users Group (BASUG) Executive and Planning Committee for accepting my
abstract and paper; and the BASUG Executive Committee organizers for organizing and supporting this virtual webinar event!

Trademark Citations

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the
USA and other countries. ® indicates USA registration. Other brand and product names are trademarks of their respective
companies.

Author Information

Kirk Paul Lafler is an entrepreneur, consultant, educator and author, and has used SAS software since 1979. Currently, Kirk
works at San Diego State University as a lecturer and adjunct professor; at the University of California San Diego Extension as an
advisor and adjunct professor; and teaches SAS, SQL, Python and R courses, seminars, workshops and webinars to users around
the world. As the author of PROC SQL: Beyond the Basics Using SAS, Third Edition (SAS Press. 2019), Google® Search Complete
(Odyssey Press. 2014) and hundreds of SAS papers and articles; Kirk has served as an Invited speaker, educator, keynote and
section leader at SAS user group conferences and meetings worldwide; and is the recipient of 25 "Best" contributed paper,
hands-on workshop (HOW), and poster awards.

Under the Hood: The Mechanics of Various SQL Query Optimization Techniques, continued BASUG 2020

Page 9

Comments and suggestions can be sent to:

Kirk Paul Lafler
SAS® Consultant, Application Developer, Programmer, Data Analyst, Educator and Author

E-mail: KirkLafler@cs.com
LinkedIn: https://www.linkedin.com/in/KirkPaulLafler/

LinkedIn: https://www.linkedin.com/in/Order-of-Magnitude-Analytics/
Twitter: @sasNerd

mailto:KirkLafler@cs.com
https://www.linkedin.com/in/KirkPaulLafler/
https://www.linkedin.com/in/Order-of-Magnitude-Analytics/

