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ABSTRACT

Multicollinearity can be briefly described as the phenomenon in which two or more identified predictor
variables are linearly related, or codependent. The presence of this phenomenon can have a negative
impact on an analysis as a whole and can severely limit the conclusions of a research study. In this paper,
we will briefly review how to detect multicollinearity, and once it is detected, which regularization techniques
would be the most appropriate to combat it. The nuances and assumptions of R1 (Lasso), R2 (Ridge
Regression), and Elastic Nets will be covered in order to provide adequate background for appropriate
analytic implementation. This paper is intended for any level of SAS® user. This paper is also written to an
audience with a background in theoretical and applied statistics, though the information within will be
presented in such a way that any level of statistics/mathematical knowledge will be able to understand the
content.

INTRODUCTION

Multicollinearity is often described as the statistical phenomenon wherein there exists a perfect or exact
relationship between predictor variables. From a conventional standpoint, this can occur in regression when
several predictors are highly correlated. (As a disclaimer, variables do not need to be highly correlated for
multicollinearity to exist, though this is oftentimes the case.) Another way to think of collinearity is as a type
of variable “co-dependence”.

Why is this important? Well, when things are related, we say that they are linearly dependent. In other
words, they fit well into a straight regression line that passes through many data points. In the incidence of
multicollinearity, it is difficult to come up with reliable estimates of individual coefficients for the predictor
variables in a model which results in incorrect conclusions about the relationship between the outcome and
predictor variables. Therefore, in the consideration of a multiple regression model in which a series of
predictor variables were chosen in order to test their impact on the outcome variable, it is essential that
multicollinearity not be present!

A LINEAR EXAMPLE

Another way to look at this issue is by considering a basic multiple linear regression equation:

y=xf+te

In this equation, y is an nx1 vector of response, x is an nxp matrix of predictor variables, j is a px1 vector
of unknown constants, and ¢ is an nx1 vector of random errors with i ~ NID(0,6"2). In a model such as this,
the presence of multicollinearity would inflate the variances of the parameter estimates, leading to a lack of
statistical significance of the individual predictor variables even if the overall model itself remains significant.
Considering this, we can see how the presence of multicollinearity can end up causing serious problems
when estimating and interpreting 8, even in the simplest of equations.

A LIVING EXAMPLE

Why should we care? Consider this example: your company has just undergone a major overhaul and it
was decided that half of the department heads would choose an assistant lead to help with their workload.
The assistant leads were chosen by the identified department heads after a series of rigorous interviews
and discussions with each applicant’s references. It is now time for next year’s budget to be decided. An
administrative meeting is held during which both department heads and their new assistant leads are
present. Keep in mind that only half of the departments have two representatives, whereas the other half
only has one representative per department. It comes time to vote, by show of hands, on a major budget



revision. Both the leads and assistants will be voting. Do you think any of the assistants will vote against
their leads? Probably not. This will end up resulting in a biased vote as the votes of the assistants would
be dependent on the votes of their leads, thus giving favor to the departments with two representatives. A
relationship such as this between two variables in a model could lead to an even more biased outcome,
thus leading to results that have been affected in a detrimental way.

DIFFERENT MODELS, DIFFERENT CIRCUMSTANCES

Collinearity is especially problematic when a model’s purpose is explanation rather than prediction. In the
case of explanation, it is more difficult for a model containing collinear variables to achieve significance of
the different parameters. In the case of prediction, if the estimates end up being statistically significant, they
are still only as reliable as any other variable in the model, and if they are not significant, then the sum of
the coefficients is likely to be reliable. In summary if collinearity is found in a model testing prediction, then
one need only increase the sample size of the model. However, if collinearity is found in a model seeking
to explain, then more intense measures are needed. The primary concern resulting from multicollinearity is
that as the degree of collinearity increases, the regression model estimates of the coefficients become
unstable and the standard errors for the coefficients become wildly inflated.

DETECTING MULTICOLLINEARITY

We will begin by exploring the different diagnostic strategies for detecting multicollinearity in a dataset.
While reviewing this section, the author would like you to think logically about the model being explored.
Try identifying possible multicollinearity issues before reviewing the results of the diagnostic tests.

INTRODUCTION TO THE DATSET

The dataset used for this paper is easily accessible by anyone with access to SAS®. It is a sample dataset
titled “lipids”. The background to this sample dataset states that it is from a study to investigate the
relationships between various factors and heart disease. In order to explore this relationship, blood lipid
screenings were conducted on a group of patients. Three months after the initial screening, follow-up data
was collected from a second screening that included additional information such as gender, age, weight,
total cholesterol, and history of heart disease. The outcome variable of interest in this analysis is the
reduction of cholesterol level between the initial and 3-month lipid panel or “cholesterolloss”. The predictor
variables of interest are age (age of participant), weight (weight at first screening), cholesterol (total
cholesterol at first screening), triglycerides (triglycerides level at first screening), HDL (HDL level at first
screening), LDL (LDL level at first screening), height (height of participant), skinfold (skinfold measurement),
systolicbp (systolic blood pressure) diastolicbp (diastolic blood pressure), exercise (exercise level), and
coffee (coffee consumption in cups per day).

DATA CLEANING AND PREPARATION

As a first step in the examination of our research question — do target health outcome variables contribute
to the amount of cholesterol lost between baseline and a 3 month follow-up — we must first identify which
variables will be used in the analysis, what these variables look like, and how these variables will interact
with each other. In short, we must clean and prepare the data for our analysis. This may seem redundant,
but it is a worthy note to make considering the type of analysis we are about to conduct. We will begin by
identifying the dataset and making sure that it is appropriately imported into the SAS environment. At this
time we will also use the CONTENTS procedure to check the structure and types of variables we will be
working with:

/* Example of Multicollinearity Findings */
libname health
"C:\ProgramFiles\SASHome\SASEnterpriseGuide\7.1\Sample\Data";

data health;
set health._lipid;
run;



proc contents data=health;
title "Health Dataset with High Multicollinearity”;
run;

Next, frequency, means, and univariate procedures were performed in order to explore the descriptive
statistics, skewness, and kurtosis of our target outcome and predictor variables within the dataset and to
identify any possible errors, outliers, and missing information that may exist.

/* Exploration of Skewness and Kurtosis */

proc univariate data= health;

var age weight cholesterol triglycerides hdl Idl height skinfold
systolicbp diastolicbp exercise coffee cholesterolloss;

probplot age weight cholesterol triglycerides hdl Idl height skinfold
systolicbp diastolicbp exercise coffee cholesterolloss / normal (mu=est
sigma=est) square;

run;

In the above code, the chisq option is indicated in the table statement of the FREQ procedure to receive
chi-square test results in the output. In the UNIVARIATE procedure, the normal option is used to request
tests for normality and goodness-of-fit, mu is used to indicate the value of the mean or location parameter
for the normal curve, sigma is used to specify the standard deviation for the normal curve, and square is
used to display a P-P plot in the square format.

If we need to correct for any errors, skewness, kurtosis, or control for missing values, we would complete
those at this time before we construct our final data tables for descriptive and univariate analyses. Once
we have corrected for our errors and missing data, we can then rerun these procedures (minus our outcome
variable) with our corrected values to look at the univariate relationships between our scrubbed predictor
variables.

MULTICOLLINEARITY INVESTIGATION

Now we can begin to explore whether or not our chosen model is suffering the effects of multicollinearity!
Given the analyses we conducted above, could you identify any possible variable interactions that could be
ending in multicollinearity? Here’s a hint: could an increase in exercise help with a decrease in cholesterol
loss? Could overall cholesterol be related to HDL and LDL levels? These are questions we will be able to
answer through our multicollinearity analysis.

Our first step is to explore the correlation matrix. We can do this through implementation of the CORR
procedure:

/* Assess Pairwise Correlations of Continuous Variables */

proc corr data=health;

var age weight cholesterol triglycerides hdl Idl height skinfold
systolicbp diastolicbp exercise coffee cholesterolloss;

title "Health Predictors - Examination of Correlation Matrix"®;
run;

Pretty easy right? Now let’s look at the results:
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Keep in mind, while reviewing these results we want to check to see if any of the variables included have a
high correlation — about 0.8 or higher — with any other variable. As we can see, upon review of this
correlation matrix, there seems to be some particularly high correlations between a few of the variables.
Some relationships of note would be Cholesterol / LDL (0.96) and Weight / Height (0.70). Next we will
examine multicollinearity through the Variance Inflation Factor, Tolerance, and Collinearity Diagnostics.

This can be done by specifying the vif, tol, and collin options respectively after the model statement:

proc reg data=health;

model

cholesterolloss =

age weight cholesterol triglycerides hdl 1dl
height skinfold systolicbp diastolicbp exercise coffee / vif tol
collin;

title "Health Predictors - Multicollinearity Investigation of VIF and
Tol*;
run;



Parameter Estimates

Parameter Standard Variance
Variable DF Estimate Error t Value Pr3>|t| Tolerance Inflation
Intercept 1 5.72484 108.12644 0.05 0.9581 0
Age 1 <] 67645 220044 03107613 032637 J 06405
Weight 1 0.20743 027789 0.75 04612 0.32763 3.05224

Cholesterol 1| -182 68577 170 82886 -1.07 | 02934 |4 326797E-7 | 2311178
Iriglycerides 1 291187 2132 107 02951 000034921 | 2863 50930

HDL 1| 182.75031 170.71293 1.07 | 0.2929 | 0.00000516 183966
LD 1/ 183.05303 170 82561 107 | 02925 | 5 113026E-7 1955769
Height 1 018355 161295 -0.12 03072 0.43551 2.29616
Skinfold 1 007347 053443 014 08916 0.77820 1.28502

SystolicBP 1 007945 063738 012 09016 0. 66694 1.49939
DiastolicBP 1 0.08111  0.43028 0.19  0.8518 0.66583 1.50130
Exercise 1 005167 005513 034 03562 0.77863 128430
Coffee 1 3.99259  3.68202 1.08  0.2866 0.44992 2.22261

Tolerance and VIF Investigation Results

When considering tolerance, we want to make sure that no values fall below 0.1. In reviewing our results,
we can see several variables — namely cholesterol, triglycerides, HDL, and LDL — had values well below
our 0.1 cutoff value. As for variance inflation, the magic number to look out for is anything above the value
of 10. This finding is echoed in review of the Variance Inflation results, where these same variables reveal
values far larger than our 10 cutoff for this column. Next, we will look at the collinearity diagnostics for an
eigensystem analysis of covariance comparison:
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Collinearity Investigation Results

In review of these results, our focus is going to be on the relationship of the eigenvalue column to the
condition index column. If one or more of the eigenvalues are small (close to zero) and the corresponding
condition number large, then we have an indication of multicollinearity. As for our results, we can see a
large deviation in the final three factors, with the eigenvalue landing very close to zero and the condition
index being quite large in comparison.

COMBATING MULTICOLLINEARITY

Is there an easy way to combat multicollinearity? Yes! All you need to do is drop one of your problem
variables, rerun your analysis to test for further multicollinearity, and if none exist, then you are good to go!
Can we always do this? Of course not. There are just some variables, no matter how highly correlated they



are, that we need to keep in the model for the sake of scientific advancement and model completeness. If
you run into a case where dropping a variable is not an option, you are in luck!

REGULARIZATION METHODS

Statistical theory and machine learning have made great strides in creating regularization techniques that
are designed to help generalize models with highly complex relationships (such as multicollinearity). In its
most simplistic form, regularization adds a penalty to model parameters (all except intercepts) so the model
generalizes the data instead of overfitting (a side effect of multicollinearity).

There are two main types of regularization: L1 (Lasso Regression) and L2 (Ridge Regression). The key
difference between these two types of regularization can be found in how they handle the penalty. Through
Ridge regression, a squared magnitude of the coefficient is added as the penalty term to the loss function.
Take the following cost function as an example:

zn:(Yi - zp: X;iB) + Azp: B;
i=1 j=1 j=1

Considering the above equation, if lambda (1 - the penalty) is zero then the equation will go back to
ordinary least squares estimations, whereas a very large lambda would add too much weight to the model
which will lead to under-fitting. Considering this, it is worthy to note the necessity in making sure we have
reviewed exactly how lambda is chosen, as this could help avoid this issue of over-fitting.

Through Lasso Regression (Least Absolute Shrinkage and Selection Operator), the absolute value of
magnitude of the coefficient is added as the penalty term to the loss function. As before, let us take the
following cost function into consideration:

zn:(Yi - zp: XiBj) + Azp: IBjl
=1 =1 =1

Considering the above equation like before, if lambda (A - the penalty) is zero then the equation will again
go back to ordinary least squares estimations, whereas a very large lambda would make the coefficients
approach zero, thus resulting in an under-fit model like before.

The key difference between these two techniques lies in the fact that Lasso is intended to shrink the
coefficient of the less important variables to zero, thus removing some of these features altogether, which
works well if feature selection is the goal of a particular model trimming technique. However, if the correction
of multicollinearity is your goal, then Lasso (L1 regulation) isn’t the way to go. Therefore, L2 regulation
techniques become our method of choice. Ridge Regression is a relatively simple process that can be
employed to help correct for incidents of multicollinearity where the subtraction of a variable is not an option
and feature selection is not a concern.

LASSO REGRESSION FOR LINEAR MODELS

LASSO selection arises from a constrained form of ordinary least squares regression where the sum of the
absolute values of the regression coefficients is constrained to be smaller than a specified parameter.
Instead of punishing the high values of the coefficients 8 (like in ridge regression), it figures out which values
are irrelevant and sets them to zero. Therefore, this method results in fewer features being included in the
final model, which can be an advantage in some situations.



More precisely, let X = (xq, x5, ..., x,,) denote the matrix of covariates and let y denote the response, where
the x;s have been centered and scaled to have a single unit standard deviation and mean zero, and y also
has mean zero. For a given parameter t, the LASSO regression coefficients g = (B4, B2, ..., Bm) are the
solution to the constrained optimization problem

minimize ||y — XB||? subject to Z;'n=1|ﬁj| =t

Provided that the LASSO parameter t is small enough, some of the regression coefficients will be exactly
zero. Hence, you can view the LASSO as selecting a subset of the regression coefficients for each LASSO
parameter. By increasing the LASSO parameter in discrete steps, you obtain a sequence of regression
coefficients where the nonzero coefficients at each step correspond to selected parameters.

Early implementations (Tibshirani 1996) of LASSO selection used quadratic programming techniques to
solve the constrained least squares problem for each LASSO parameter of interest. However, Osborne,
Presnell, and Turlach (2000) later developed a "homotopy method" which generates the LASSO solutions
for all values of t. Efron and colleauges (2004) then derived a variant of their algorithm for least angle
regression (LAR) that can be used to obtain a sequence of LASSO solutions from which all other LASSO
solutions can be obtained by linear interpolation. This algorithm for SELECTION=LASSO is used in PROC
GLMSELECT. It can be viewed as a stepwise procedure with a single addition to or deletion from the set
of nonzero regression coefficients at any step.

As with the other selection methods supported by PROC GLMSELECT, you can specify a criterion to
choose among the models at each step of the LASSO algorithm with the CHOOSE= option. You can also
specify a stopping criterion with the STOP= option. See the discussion in the section Forward Selection
(FORWARD) for additional details. The model degrees of freedom PROC GLMSELECT uses at any step
of the LASSO are simply the number of nonzero regression coefficients in the model at that step. Efron et
al. (2004) cite empirical evidence for doing this but do not give any mathematical justification for this choice.

One issue with LASSO regression is that it has a quadratic programming problem, however, this can be
solved by utilizing the LAR solution as detailed in Efron and colleagues (2004) work. This method utilizes a
stepwise variable selection algorithm (Least Angel Regression and Shrinkage). This option is a less greedy
version of traditional forward selection methods and is designed to efficiently solve LASSO’s solution path
issue. It has the same order of computational efforts as a single OLS fit 0 (np?). In SAS the LAR maodification
of LASSO selection uses the LASSO algorithm to select the set of covariates in the model at any step, but
uses ordinary least squares regression with just these covariates to obtain the regression coefficients. You
can request this hybrid method by specifying the LSCOEFFS suboption of SELECTION=LASSO.

This procedure can be used for both linear and logistic regression and is completed by employing either
Proc GLMSelect or Proc HPreg.

/* Lasso Selection */

proc glmselect data=health plots=all;
model cholesterolloss = age weight cholesterol triglycerides hdl
Idl height skinfold systolicbp diastolicbp exercise coffee
selection=lar (choose=cv stop=none) cvmethod=random(10);
title "Health - Lasso Regression Calculation®;

run;



Standardized Coefficient

CWPRESS

Health - Lasso Regression Calculation

The GLMSELECT Procedure

LAR Selection Summary

Effect Number
Step | Entered Effects In | CV PRESS
0 | Intercept 1 328923215
1| Cholesterol 2 29023.4028
2 | Height 3 28345.4812%
3 | Weight 4 28353.9319
4 | Exercise 5 28918.5462
5 | Coffee 6| 28513.9674
6 | LDL 7| 30648.6581
T | DiastolicBP 8 31819.5480
8 | Age 9| 341428348
9 | SystolicBP 10 36309.8315
10 | Triglycerides 11 38241.8217
11 | Skinfold 12 39651.2277
12 | HDL 13 44039.3374

* Optimal Value of Criterion

Selection stopped because all effects are in the final model.

LAR Selection Summary for GLM Select
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Fit Criteria for CholesterolLoss

:c\,/‘,—\/
AlCC / SBC
S i
I ’f\/
f CV PRESS
T T T T T T
i 5 10 0 s 10
Step Step
i\\? Best Criterion “alue Step Selected by CV PRESS
Fit Criteria for Outcome Variable
Progression of Average Squared Errors for CholesterolLoss
750 Selected Step
700
i
T 650 -
m
3
o
o
o
$ 600
Ey
650 \9\5\@_
—e— o
T T

% <, Ly &) 2 & &, z, 7 7
%, o, T Tw e o Tt o, Ty, e G e S
e s, 5, s o % 5 % o % %,
LN A ) %, % %, <
8 4 e %, 2 8 %
‘o &y ) /,%

Effect Sequence

Progression of Average Squared Errors for Outcome Variable




Analysis of Variance

Sum of Mean
Source DF Squares Square | F Value
Model 2 3963.41962 1981.70981 2.82
Error 40 28094 T02.35637
Corrected Total | 42 32058
Root MSE 26.50201

Dependent Mean 9.76744

R-Square 0.1236
Adj R-5q 0.0798
AlC 329.73117
AICC 330.78380
SBC 290.01477
CV PRESS 28345

Parameter Estimates

Parameter | DF | Estimate

Intercept 1/ -1.388985
Cholesterol | 1 0.125281
Height 1 -0.194803

Final Selected Model by LASSO Regression and LAR Procedures

RIDGE REGRESSION FOR LINEAR MODELS

Ridge regression is a variant of least squares regression and is oftentimes used when multicollinearity
cases are identified. The traditional ordinary least squares (OLS) regression produces unbiased estimates
for the regression coefficients, however, if you introduce the confounding issue of highly correlated
explanatory variables, your resulting OLS parameter estimates end up with large variance (as discussed
earlier). Therefore, it could be beneficial to utilize a technique such as ridge regression in order to ensure
a smaller variance in resulting parameter estimates. The following code details a ridge regression
application

/* Ridge Regression Example */

proc reg data=health outvif plots(only)=ridge(unpack VIFaxis=l1og)
outest=rrhealth ridge=0 to 0.10 by .002;

model cholesterolloss = age weight cholesterol triglycerides hdl I1dl
height skinfold systolicbp diastolicbp exercise coffee;

plot / ridgeplot nomodel nostat;

title "Health - Ridge Regression Calculation”;

run;

proc print data=rrhealth;
title "Health - Ridge Regression Results”®;
run;

The ridge= option requests the ridge regression technique in the REG procedure, the outvif option is
indicated to ouput= the variance inflation factors, and the outset option displays the data table with our
results. For this study, we also wanted to look at each of the individual plots for ridge traces and VIF traces,
so the unpack suboption of the plots(only)=ridge option is designated. The plot statement is designated to
display scatter plots of the y and x variables, ridgeplot to request the ridge trace for ridge regression,
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nomodel to suppress the display of the fitted model and lable, and the nostat suppresses the display of the
default statistics.

The results produced by this procedure can be seen below:
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Health - Ridge Regression Resuits

Obs MODEL_ _TYPE DEPUAR
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From these results we want to derive the appropriate ridge parameter or “k” to include in the analysis. The
ridge parameter column is labeled RIDGE_ and the associated values under each variable column are
the new parameter estimates. There are several schools of thought concerning how to choose the best
value of “k”. | recommend reading Dorugade and Kashid’s 2010 paper for more information on this matter.
The current paper will simply look at the least increase in _ RMSE__and a decrease in ridge variable inflation
factors for each variable. Given that our current range of “k” displayed an immediate correction (as can be
seen visually in our ridge trace and VIF graphs), we will dig down further into the potential “k” values to find
a more specific value for our use:

proc reg data=health outvif plots(only)=ridge(unpack VIFaxis=log)
outest=rrhealth ridge=0 to 0.002 by .00002;

model cholesterolloss = age weight cholesterol triglycerides hdl IdI
height skinfold systolicbp diastolicbp exercise coffee;

plot / ridgeplot nomodel nostat;
title 'Health - Ridge Regression Calculation’;

run;

proc print data=rrhealth;
title 'Health - Ridge Regression Results';

run;

The results of this more detailed dig are as follows:
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Ridge Trace Results
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Obs | MODEL_ _TYPE_ _DEPVAR_ _RIDGE_ _PCOMIT_ _RMSE_ lntercept  Age Weight Cholesterol Trighypcerides HOL LDL  Helght Skinfold SystolicBP [HastolicBP
1/ MODELY PARME  Cholestrciloss 274750 STME DETES .0.2074) 122 69 291 127 16205 D855 DOTMT 007945 208111
2| MODELt RIDGEVF Cholestacclloss 0000 : MR 286367 19366571 193570811 229616 120502 149929 154180
3|MODELY RIDGE  Cholesterciloss 00000 274750 122 6% 299, @278 18205 018555 DOTUT 007945 208111
4| MODEL! RIDGEVF Cholstarclloss 00002 284 10 295 xm 2081 201129 12768 147269 1 46568
5/ MODEL! RIDGE  Cholestarclloss 00002 76781 1TTET2 094584 012350 186 o2 204 221 079068 00292 01682 0 01061
6 MODEL! RIDGEVF Cholesterciloss 00004 100191 2 00085 nx 268 CF2] 6159 201089 127668 147254 1 46552
7|/ MODELY! RIDGE Cholasterciloss 00064 2763 1T RIST 0 BT20 .0 12300 085 oo 104 122 D792 002677 016967 00100
#|MODEL! RIDGEVF Cholestercilocs 00006 302124 200194 £ T 264 190 2799 201071 127678 1471239 146536
9| MODEL!  RIDGE Cholestercilozs 00006 IT6REA 1T BES6 0 MTET .0.12247 251 0.00 070 086 079515 002869 0 148E1 2 009%5
%0 | MODEL1 RIDGEVF Chokesterclloss 00008 302057 280134 1843 262 372 1616 201043 127668 147226 144420
11| MODEL1 RIDGE  Chokslordiloss  0CDOB IEEE 1TATZY D WMTES 0 1aead 034 a.e0 053 071 079571 002664 016986 2 01966
12| MODEL!  RIDGEVF Cholesterciloss 00010 019 26004 12 06 261 318 1070 201016 127657 147270 144504
13 MODELYT RIDGE CholesterciLoss et 2T 68T 1T BBOS -0 MTT1 -0022TS 424 400 043 061 079604 -DO2BE2 016968 4 00980
%4 MODEL! RIDGEVF Cholesterdlloss 00012 301524 200004 854 261 288 T2 200988 127647 147195 1 46480
15| MODEL1 RDGE  Cholesterciloss 00012 276874 17 BBES -0 MT67 -0.12272 017 001 0 0.54 079627 -002060  0.16988 2 00476

Ridge Regression Results

These results display a more gradual adjustment over several iterations of potential “k” values. Ultimately,
it seems that the ridge parameter of 0.0001 may be our winner, as we see a slight increase in _RMSE_
from 27.1752 to 27.6864 and significant drop in the VIF for each of our problem variables to below our
cutoff of 10. Therefore, this study will choose the ridge parameter of 0.0001 for the resulting parameter
adjustments which are identified in the following code:

proc reg data=health outvif plots(only)=ridge(unpack VIFaxis=log)
outest=rrhealth_final ridge=.0001;

model cholesterolloss = age weight cholesterol triglycerides hdl Idl
height skinfold systolicbp diastolicbhp exercise coffee;

plot 7/ ridgeplot nomodel nostat;

title "Health - Ridge Regression Calculation®;

run;

proc print data=rrhealth_final;

title "Health - Ridge Regression Results”;
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run;

These results can then be used as our final adjusted model with the multicollinearity issue controlled!

Health - Ridge Regression Calculation —
Parameter Estimates
The REG Procedure
Model: MODEL1
Dependent Variable: CholesterolLoss

Parametor Standard
Variable DF  Estimate Error tValue Pr> |t

Intercept 1 572484 108 12644 005 09581

Number of Observations Read 95 Age 7 067645 2 20644 0431 07613

Number of Obsarvations Used 13 Weight 1| 20743 027789 075 04512

FIRSIST A I SYICR S B TR ¥ e | 52 Cholesterol | 1 -182 68577 17082886  -107 02934

R o Ve Triglycerides| 1 291187 | 273231 107 0.2951

e [ HDL 1 18275031 17071293 107 0.2929

Source DF Squares Square F Value Pr>F LDL 1 183.05303 17082561 107 0.2925

12 9 10 | 825 2 1 ke =
S o it st B ] b Height 1 018955 161295 012 0.9072
E 0 22165 73849194

e Skinfold 1 007347 05343 014 08916
Corrected Total | 42 32088 . =

SystolicBP 1 007945 063738 0.12 0.9016

Root MSE 2717521 R-Square 03089 DiastolicBP 1 -0.08111 043028  -0.12 0.8518

Dependent Mean  9.76744 AdjR-Sq  0.0328 Exercise 1 D 05167 005513 094 035562

Coeff Var 278.22237 Coffee 1 399259 368202 108 02858

Ridge Regression Results for Original Model

Obs MODEL_ _TYPE_ _DEPVAR _RIDGE | _PCOMIT_ _RMSE_  Intercept Age Weight Cholesterol
1 MODEL1 PARMS CholestarolLoss . . 211752 57248 -0.67645 -020743 -182.686
2 MODELY RIDGEVIF CholesterclLoss 0001 : . 3.01991 280074 12.058
3 MOCELY RIDGE CholestarolLoss 0001 276870 17.8805 -0.94771 | -0.12275 -0.238

Adjusted Ridge Regression Results

If we want to see standard errors and parameter estimates for our new model, we can designate outseb
in our model statement when we rerun the model.

proc reg data=health outvif plots(only)=ridge(unpack VIFaxis=log)
outest=rrhealth_final outseb ridge=.0001;

model cholesterolloss = age weight cholesterol triglycerides hdl Idl
height skinfold systolicbp diastolicbp exercise coffee;

plot 7/ ridgeplot nomodel nostat;

title "Health - Ridge Regression Calculation”;
run;

proc print data=rrhealth_final;
title "Health - Ridge Regression Results”;
run;

Our results will then look something like this:
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Obs _MODEL_ _TYPE_ _DEPVAR_ _RIDGE_ _PCOMIT_ _RMSE_ Intercept Age Weight Cholesterol Triglycerides HDL

1| MCDEL1 PARMS CholesteralLoss . 27.1782 5.7256 -0.67645 | -0.20743 182.686 2.91187 | 182.750
2 MODEL1 SEB CholesterclLoss 271752 108.126 220644 0.27789 170.629 2.73231 | 170.713
3| MCDEL1 RIDGEVIF | CholesterclLoss 0041 3.01991 2.80074 12.058 261318 3.181
4 MODEL1 RIDGE CholesterolLoss 0001 27 8870 17.881 -0.94771 -0.12275 -0.238 -0.00494 0428
5 MODEL1 RIDGESEE CholesterclLoss 0001 276870 1089.531 223174 027121 0.398 0.08408 074

Ridge Regression Results With Outseb

The SEB and RIDGESEB rows (_TYPE_ column) gives us the standard errors and parameter estimates of
our original and adjusted models respectively.

ELASTIC NETS FOR LINEAR MODELS

Some advantages of LASSO regression: (1) it is great if your goal is to reduce the number of variables in
your model in order to control for multicollinearity, (2) it enforces sparcity in parameter selection and
inclusion, (3) it has a quadratic programming problem that can be resolved through use of the LAR solution
(Efron et al, 2004), (4) as A goes to 0, t goes to «, and the model approaches the traditional OLS solution
(reduces the amount of bias), (5) as A goes to «, t goes to 0, and £ is zeroed out. Some disadvantages of
LASSO regression: (1) if a group of predictors are highly correlated among themselves, LASSO tends to
pick only one of them and will shrink the others to zero, (2) LASSO can not perform grouped selection, as
it tends to select only one variable.

Lasso Regression Adjustment (Blue) to Linear Regression (Red)

Some advantages of Ridge regression: (2) it is great if your goal is to adjust for multicollinearity with grouped
selections, rather than for variable reduction, (2) it produces biased but smaller variance and smaller Mean
Square Error (MSE), (3) it results in an explicit solution. Some disadvantages of Ridge regression: (1) the
aforementioned biased results, (2) it tends to shrink coefficients to near zero but can not produce a
parsimonious model.
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Ridge Regression Adjustment (Blue) to Linear Regression (Red)

Several researchers and data scientists have worked hard to explore the value of procedures like Elastic
Nets to help resolve the L1/L2 debate to multicollinearity correction. Through this technique, we are able to
combine the strengths of both Ridge and LASSO regression, while minimizing the negative impact of either
of these procedures. Some advantages of Elastic Net is that it is able to (1) enforce sparsity, (2) it has no
limitation on the number of selected variables, and (3) it encourages a grouping effect in the presence of
highly correlated predictors. A main disadvantage of this technique is that a naive elastic net can suffer
from double shrinkage, therefore, one needs to be careful when employing this option. If a naive elastic net
is found, a correction does exist to help control for this.

Elastic Net (Orange) Compared to LASSO (Red) and Ridge Regression (Blue) Adjustments

The elastic net method bridges the LASSO method and ridge regression. It balances having a parsimonious
model with borrowing strength from correlated regressors, by solving the least squares regression problem
with constraints on both the sum of the absolute coefficients and the sum of the squared coefficients. More

specifically, the elastic net coefficients B = (B, B2 ..., ) are the solution to the constrained optimization
problem

m m

min ||y — X subjectto Y |f;[ <1, Y B <15
J=1 J=1
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The method can be written as the equivalent Lagrangian form
m m

min|ly —XB|P+4; Y 1B+ 4. Y B}
j=1 j=1

Or as

n 2
> —ixi,-ﬁ,-) EICOIN RS Zp:ﬁf
i=1 j=1 - j=1

If 11 is set to a very large value or, equivalently, if A1 is set to 0, then the elastic net method reduces to ridge
regression. If I2 is set to a very large value or, equivalently, if A2 is set to 0, then the elastic net method
reduces to LASSO. If f1 and {2 are both large or, equivalently, if 1 and 42 are both set to 0, then the elastic
net method reduces to ordinary least squares regression.

Additionally, as stated by Zou and Hastie in their 2005 article, the elastic net method can overcome the
limitations of variable selection through LASSO, in particular, in the following three scenarios:

e Inthe case where you have more parameters than observations, #it == 1, the LASSO method selects
at most n variables before it saturates, because of the nature of the convex optimization problem.
This can be a defect for a variable selection method. By contrast, the elastic net method can select
more than n variables in this case because of the ridge regression regularization.

e If there is a group of variables that have high pairwise correlations, then whereas LASSO tends to
select only one variable from that group, the elastic net method can select more than one variable.

e Inthe n > i case, if there are high correlations between predictors, it has been empirically observed
that the prediction performance of LASSO is dominated by ridge regression. In this case, the elastic
net method can achieve better prediction performance by using ridge regression regularization.

An elastic net fit is achieved by building on LASSO estimation, in the following sense. Let X be a matrix
obtained by augmenting X with a scaled identity matrix,

X = [X; /A1)

Let ¥ be a vector correspondingly obtained by augmenting the response ¥ with m Q’s, y= 0
Then the Lagrangian form of the elastic net optimization problem can be reformulated as

"

min|[§ — XB[* +4; ¥ 18,

j=I1

In other words, you can solve the elastic net method in the same way as LASSO by using this augmented
design matrix X and response ¥. Therefore, for given A2, the coefficients of the elastic net fit follow the
same piecewise linear path as LASSO. Zou and Hastie (2005) suggest rescaling the coefficients

by I + Az to deal with the double amount of shrinkage in the elastic net fit, and such rescaling is applied
when you specify the ENSCALE option in the MODEL statement.

If you have a good estimate of Az, you can specify the value in the L2= option. If you do not specify a value

for ﬁ-:, then by default PROC GLMSELECT searches for a value between 0 and 1 that is optimal according
to the current CHOOSE= criterion. Figure 48.12 illustrates the estimation of the ridge regression

parameter Az (L2). Meanwhile, if you do not specify the CHOOSE= option, then the model at the final step
in the selection process is selected for each Az (L2), and the criterion value shown in the below figure is the
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http://support.sas.com/documentation/cdl/en/statug/67523/HTML/default/statug_glmselect_references.htm#statug_glmselectzou_h05
http://support.sas.com/documentation/cdl/en/statug/67523/HTML/default/statug_glmselect_details12.htm#statug.glmselect.elasticNetL2

one at the final step that corresponds to the specified STOP= option (STOP=SBC by default). Additionally,
it is worthwhile to note that when you specify the L2Z2SEARCH=GOLDEN, it is assumed that the criterion
curve that corresponds to the CHOOSE= option with respect to A2 is a smooth and bowl-shaped curve.

However, this assumption is not checked and validated. Hence, the default value for the L2SEARCH=
option is set to GRID.

Criterion Criterion Criterion
Value Value Value

Best L1
Best L2

Elastic Net can be used for both linear and logistic regression and is completed by employing either Proc
GLMSelect or Proc HPreg.

/* Elastic Net */
proc glmselect data=health plots=coefficients;
model cholesterolloss = age weight cholesterol triglycerides hdl
1dl height skinfold systolicbp diastolicbp exercise coffee /
selection=elasticnet(steps=120 choose=cv) cvmethod=split(4);

title "Health - Elastic Net Regression Calculation®;
run;
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Eladic Net Selection Summary

Effect Effect Number
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& LDL T
T DiastolicBP 8
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9 SydolicBP 10
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12 DiastolicBP 11
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7 Triglycerides 12
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Elastic Net Selection Summary

Coefficient Progression for CholesterolLoss
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Coefficient Progression for the Outcome Variable
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The =lected model, ba=ed on Cross Validation, is the model at Step 1.

Effectzs Intercept Cholesterl

Analy ss of Variance

Sum of Mean
Source DF Squares Square F Value
Model 1]3104.61824 310461824 4.40
Emor 41 28953 TOE.17208
Corrected Total 42 32058
Root MSE 28.57380

Dependent Mean =R

R-Square 0.09488
Adj R-5g 0.0748
AlC 17902693
AlCC 320641
5BC 28754833
CV PRESS 27349

Pammeter Estimates
Parameter DF  Estimate
Intercept 1 -11.027658
Cholesterol 1 0. 108718

Final Model with Elastic Net Variable Selection

CONCLUSION

Multicollinearity, if left untouched, can have a detrimental impact on the generalizability and accuracy of
your model. If multicollinearity exists the traditional ordinary least squares estimators are imprecisely
estimated, which leads to this inaccuracy in your judgment as to how each predictor variable impacts your
target outcome variable. Given this information it is essential to detect and solve the issue of multicollinearity
before estimating the parameters based on a fitted regression model.

Detecting multicollinearity is a fairly simple procedure involving the employment of VIF, tol, and Collin model
options. The CORR procedure is also useful in multicollinearity detection. After discovering the existence
of multicollinearity, you can correct for this through the utilization of several different regularization and
variable reduction techniques. A few ways in which to control for multicollinearity is through the
implementation of techniques such as Ridge Regression, LASSO regression, and Elastic Nets.
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LASSO

Ridge
hY

Elastic Net Compared to LASSO and Ridge Regression Adjustments

Along with these procedures, there also exists substantive research into the cause and effect of
multicollinearity in studies from fields across the research spectrum. For every issue that arises, there is a
plethora of procedures that could be used to help control for and correct the effects that an issue such as
multicollinearity can have on the integrity of a model. Given this, the author has included several references
and recommended articles for your review to help further the understanding of all statisticians and
programmers as to the effects of multicollinearity on research models.

Through the steps outlined in this paper, one should be able to not only detect any issue of multicollinearity,
but also resolve it in only a few short steps!
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